scholarly journals Cytokines and the still-baffling clinical biology of COVID-19

2020 ◽  
Vol 87 (7) ◽  
pp. 381-382
Author(s):  
Brian F. Mandell
Keyword(s):  
2017 ◽  
Author(s):  
L. J. Millet ◽  
A. Jain ◽  
M. U. Gillette

Key determinants in the emergence of complex cellular morphologies and functions are cues in the micro-environment. Primary among these is the presence of neighboring cells as networks form. Therefore, for high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction (E-PDMS) and hydrothermal annealing create unique conditions that produce high-strength bonds between E-PDMS and glass – properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high bond strengths, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These low-cost, simple E-PMDS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.


2013 ◽  
Vol 59 (4) ◽  
pp. 684-691 ◽  
Author(s):  
Veronica H Flood ◽  
Joan Cox Gill ◽  
Kenneth D Friedman ◽  
Pamela A Christopherson ◽  
Paula M Jacobi ◽  
...  

BACKGROUND von Willebrand factor (VWF) is a multimeric protein that binds platelets and collagen, facilitating hemostasis at sites of vessel injury. Measurement of VWF multimer distribution is critical for diagnosis of variant von Willebrand disease (VWD), particularly types 2A and 2B, but the typical measurement by gel electrophoresis is technically difficult and time-consuming. A comparison of VWF collagen binding (VWF:CB) and VWF multimer distribution was performed to evaluate the utility of VWF:CB as a diagnostic test. METHODS Participants were enrolled in the Zimmerman Program for the Molecular and Clinical Biology of VWD. VWF:CB was analyzed with type III collagen and multimer distribution by agarose gel electrophoresis. The study population included 146 healthy controls, 351 individuals with type 1 VWD, and 77 with type 2 VWD. Differences between individuals with multimer group results within (controls) and outside the reference intervals were assessed with Mann–Whitney tests. RESULTS The mean VWF:CB/VWF antigen ratio was 1.10 for individuals with multimer distribution within the reference intervals and 0.51 for those with multimer distribution outside the reference intervals (P < 0.001). Sensitivity of VWF:CB for multimer abnormalities was 100% for healthy controls, 99% for patients with type 1, and 100% for patients with type 2A and type 2B VWD using a VWF:CB/VWF antigen cutoff ratio of 0.6, and decreased to 99% for all patients with a ratio of 0.7. With the exception of individuals with novel or unclassified mutations, the VWF:CB was able to correctly categorize participants with variant VWD. CONCLUSIONS These findings suggest that VWF:CB may substitute for multimer distribution in initial VWD testing, although further studies are needed to validate the clinical utility of VWF:CB.


Gene X ◽  
2020 ◽  
Vol 5 ◽  
pp. 100023 ◽  
Author(s):  
Amelia Meecham ◽  
John F Marshall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document