clinical chemistry
Recently Published Documents


TOTAL DOCUMENTS

3846
(FIVE YEARS 445)

H-INDEX

79
(FIVE YEARS 9)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Sebastian Peters ◽  
Eva Wirkert ◽  
Sabrina Kuespert ◽  
Rosmarie Heydn ◽  
Siw Johannesen ◽  
...  

The capability of the adult central nervous system to self-repair/regenerate was demonstrated repeatedly throughout the last decades but remains in debate. Reduced neurogenic niche activity paralleled by a profound neuronal loss represents fundamental hallmarks in the disease course of neurodegenerative disorders. We and others have demonstrated the endogenous TGFβ system to represent a potential pathogenic participant in disease progression, of amyotrophic lateral sclerosis (ALS) in particular, by generating and promoting a disequilibrium of neurodegenerative and neuroregenerative processes. The novel human/primate specific LNA Gapmer Antisense Oligonucleotide “NVP-13”, targeting TGFBR2, effectively reduced its expression and lowered TGFβ signal transduction in vitro and in vivo, paralleled by boosting neurogenic niche activity in human neuronal progenitor cells and nonhuman primate central nervous system. Here, we investigated NVP-13 in vivo pharmacology, safety, and tolerability following repeated intrathecal injections in nonhuman primate cynomolgus monkeys for 13 weeks in a GLP-toxicology study approach. NVP-13 was administered intrathecally with 1, 2, or 4 mg NVP-13/animal within 3 months on days 1, 15, 29, 43, 57, 71, and 85 in the initial 13 weeks. We were able to demonstrate an excellent local and systemic tolerability, and no adverse events in physiological, hematological, clinical chemistry, and microscopic findings in female and male Cynomolgus Monkeys. Under the conditions of this study, the no observed adverse effect level (NOAEL) is at least 4 mg/animal NVP-13.


Author(s):  
Ingo Mrosewski ◽  
Tobias Dähn ◽  
Jörg Hehde ◽  
Elena Kalinowski ◽  
Ilona Lindner ◽  
...  

Abstract Objectives Establishing direct reference intervals (RIs) for pediatric patients is a very challenging endeavor. Indirectly determined RIs can address this problem by utilization of existing clinical laboratory databases. In order to provide better laboratory services to the local pediatric population, we established population-specific hematology RIs via data mining. Methods Our laboratory information system (LIS) was searched for pediatric blood counts of patients aged from 0 days to 18 years, performed from 1st of January 2018 until 31st of March 2021. In total, 27,554 blood counts on our SYSMEX XN-9000 were initially identified. After application of pre-defined exclusion criteria, 18,531 sample sets remained. Age- and sex-specific RIs were established in accordance with International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and Clinical & Laboratory Standards Institute (CLSI) recommendations. Results When compared to pediatric RIs supplied by other authors, the RIs determined specifically for pediatric patients from Berlin and Brandenburg showed several relevant differences, especially with regard to white blood cell counts (WBCs), red blood cell counts (RBCs), red cell distribution widths (RDW) and platelet counts (PLTs) within the distinct age groups. Additionally, alterations to several published age-specific partitions had to be made, while new sex-specific partitions were introduced for WBCs and PLTs. Conclusions Generic RIs from textbooks, manufacturer information and medical publications – even from nationwide or multicenter studies – commonly used in many laboratories might not reflect the specifics of local patient populations properly. RIs should be tailored to the serviced patient population whenever possible. Careful data mining appears to be suitable for this task.


2022 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
John Ibhagbemien Anetor ◽  
Chukwuemelie Zedech Uche ◽  
Gloria Oiyahumen Anetor

Chemical pathology (clinical chemistry/biochemistry) is the branch of laboratory medicine concerned with the detection of alterations in the chemical constituents and biochemical mechanisms, which ensure health, culminating in disease. The disease itself is a pattern of response to some insult or injury resulting in a disturbed function or structure. It is often difficult to ascertain precisely the point of transition from health to a disease state. Pathological changes, including metabolic and molecular perturbations, with the potential to progress to clinical disease, are also present in healthy populations, noteworthy are the reactive oxygen species such as hydroxyl radicals with the propensity to cause oxidative DNA damage. Biochemical profiles or panels such as liver function tests, renal function tests, bone profile, lipid profile, acid-base, and critical care have served as biomarkers employed in indicating the presence of or measuring the progress of the disease, as well as the effect of treatment. Oxidative stress, an imbalance between bio-available antioxidants and reactive species, is now widely recognized as accompanying most pathological states. Hence, the exclusion of antioxidant components in biochemical profiles appears a grave oversight. Basic components of the antioxidant system, glutathione (GSH), zinc, uric acid, ascorbic acid, and α-tocopherol, may be selected for incorporation. GSH is particularly important; as a scavenger for damaging oxidative intermediates in cells, it promises to be a good predictor of disease progression and prognosis. Including the antioxidant component into traditional profiles may aid physicians in more confidently ruling out disease, enabling further investigations, and/or reassuring patients. It is proposed that redefining the traditional profiles in chemical pathology by incorporating the indexes of the antioxidant system promises considerable improvement in the risk assessment process, in disease detection and recognition of the threshold of clinical concern in disease management and biotherapy.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261555
Author(s):  
Daniel E. Radford-Smith ◽  
Preya J. Patel ◽  
Katharine M. Irvine ◽  
Anthony Russell ◽  
Dan Siskind ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) and depression are common disorders and have bidirectional contributing relationships to metabolic syndrome. We aimed to determine whether a fasting serum signature of recent, self-reported depressive symptoms could be identified in a heterogeneous NAFLD cohort using nuclear magnetic resonance (NMR)-based metabolomics integrated with clinical chemistry. Serum nuclear magnetic resonance (NMR) metabolite profiles and corresponding clinical chemistry were compared between patients with depressive symptoms in the last 12-months (n = 81) and patients without recent depressive symptoms (n = 137 controls) using multivariate statistics. Orthogonal partial least squares discriminant analysis (OPLS-DA) of the biochemical and metabolomic data identified NAFLD patients with recent depression with a cross-validated accuracy of 61.5%, independent of age, sex, medication, and other comorbidities. This led to the development of a diagnostic algorithm with AUC 0.83 for future testing in larger clinical cohorts. Serum triglycerides, VLDL cholesterol, and the inflammatory biomarker GlycA were key metabolites increased in patients with recent depressive symptoms, while serum glutamine level was reduced. Here, serum NMR metabolite analysis provides a link between disturbed lipid metabolism, inflammation, and active mental health issues in NAFLD, irrespective of disease severity.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yuan Fan ◽  
Yunxing Fu ◽  
Yuhang Zhou ◽  
Yu Liu ◽  
Baocheng Hao ◽  
...  

Abstract Background Py-mulin is a new pleuromutilin derivative with potent antibacterial activities in vitro and in vivo, suggesting this compound may lead to a promising antibacterial drug after further development. The present study is aimed to evaluate the acute and subacute oral toxicity, and the genotoxicity with the standard Ames test according to standard protocols. Methods Acute oral toxicity of Py-mulin was determined using Kunming mice. The 28-day repeated dose oral toxicity study in SD rats was performed according to OECD guideline No. 407. The bacterial reverse mutation (Ames test) was carried out using four Salmonella typhimurium (S. typhimurium) strains TA97, TA98, TA100 and TA1535 with and without S9 metabolic activation. Results The LD50 values in acute oral toxicity were 2973 mg/kg (female mice) and 3891 mg/kg (male mice) calculated by the Bliss method. In subacute toxicity study, 50 mg/kg Py-mulin did not induce any abnormality in body weight, food consumption, clinical sign, hematology, clinical chemistry, organ weight, and histopathology in all of the treatment groups. However, high doses of Py-mulin (100 and 300 mg/kg) displayed slightly hepatotoxicity to female rats. Furthermore, Py-mulin did not significantly increase the number of revertant colonies of four standard S. typhimurium strains with the doses of 0.16–1000 μg/plate in the Ames study. Conclusions Based on our findings, our study provides some information for the safety profile of Py-mulin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andang Miatmoko ◽  
Ester Adelia Mianing ◽  
Retno Sari ◽  
Esti Hendradi

Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30–200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010–2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joséphine Gander ◽  
Justin Carrard ◽  
Hector Gallart-Ayala ◽  
Rébecca Borreggine ◽  
Tony Teav ◽  
...  

Coronary artery disease (CAD) remains the leading cause of death worldwide. Expanding patients' metabolic phenotyping beyond clinical chemistry investigations could lead to earlier recognition of disease onset and better prevention strategies. Additionally, metabolic phenotyping, at the molecular species level, contributes to unravel the roles of metabolites in disease development. In this cross-sectional study, we investigated clinically healthy individuals (n = 116, 65% male, 70.8 ± 8.7 years) and patients with CAD (n = 54, 91% male, 67.0 ± 11.5 years) of the COmPLETE study. We applied a high-coverage quantitative liquid chromatography-mass spectrometry approach to acquire a comprehensive profile of serum acylcarnitines, free carnitine and branched-chain amino acids (BCAAs), as markers of mitochondrial health and energy homeostasis. Multivariable linear regression analyses, adjusted for confounders, were conducted to assess associations between metabolites and CAD phenotype. In total, 20 short-, medium- and long-chain acylcarnitine species, along with L-carnitine, valine and isoleucine were found to be significantly (adjusted p ≤ 0.05) and positively associated with CAD. For 17 acylcarnitine species, associations became stronger as the number of affected coronary arteries increased. This implies that circulating acylcarnitine levels reflect CAD severity and might play a role in future patients' stratification strategies. Altogether, CAD is characterized by elevated serum acylcarnitine and BCAA levels, which indicates mitochondrial imbalance between fatty acid and glucose oxidation.


Sign in / Sign up

Export Citation Format

Share Document