The Use Of Time Domain Reflectometry For Vertically Profiling The Water Content Through The Unsaturated Zone

Author(s):  
P.A. Ferre ◽  
D.L. Rudolph
Soil Research ◽  
1995 ◽  
Vol 33 (2) ◽  
pp. 265 ◽  
Author(s):  
PJ Gregory ◽  
R Poss ◽  
J Eastham ◽  
S Micin

We investigated the potential sources of error when using time domain reflectometry (TDR) to measure the water content of sandy soils and evaluated the technique as a means of measuring evaporation from columns of soil and changes in soil water storage beneath crops. Inaccurate depth location of the transmission lines or the development of a hole at the tip of the transmission lines introduced an error about 10 times larger than the errors associated with hardware and software. Calibration in two sandy soils gave a curve of similar shape to that found by others except for values of dielectric constant < 6 when measured values of water content were less than those expected. Daily evaporation from soil columns measured by weighing and with TDR showed large differences between the two techniques (up to 32%) but compensating errors over time allowed cumulative evaporation to be estimated with TDR to within 6.6% of that determined by weighing over a 162 h period. Under field conditions, the agreement between TDR and neutron probe measures of changes in soil water storage in the upper 0.3 m was good and generally within 10% over both 14 day and longer periods.


1985 ◽  
Vol 22 (1) ◽  
pp. 95-101 ◽  
Author(s):  
D. E. Patterson ◽  
M. W. Smith

The use of time-domain reflectometry (TDR) for determining the phase composition of saline permafrost from measurement of the apparent dielectric constant, Ka, is examined.Combined TDR–dilatometry experiments were performed to assess whether the TDR method could be used on frozen soil samples with high pore water salinity. In general, unfrozen water content determinations by TDR were within ±0.025 cm3∙cm−3 of those obtained by dilatometry, with no marked influence due to salinity. A novel probe design for use on saline core samples shows promise as a means for determining unfrozen water contents in the field.


Sign in / Sign up

Export Citation Format

Share Document