unfrozen water content
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 3)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Edyta Nartowska ◽  
Tomasz Kozłowski

This research was conducted with the use of the DSC method; it involved the examination of the unfrozen water content in two model (source) calcium bentonites (≥75% smectite), after one to three freeze-thaw cycles in the natural state, as well as after the ion exchange for a potentially toxic element (Cu2+). The freeze-thaw cycles do not affect the unfrozen water content at a given negative temperature in a statistically significant manner. However, a statistically significant influence of temperature, the initial mass of the water, and the clay type on the change of the unfrozen water content was found. Moreover, the empirical models of predicting the unfrozen water in the bentonite after the exchange for Cu2+ ion were created, for which the parameter was the mass of the water and the mass of the dry soil, at the temperature of −2 °C.


2021 ◽  
Author(s):  
Chuangxin Lyu ◽  
Satoshi Nishimura ◽  
Seyed Ali Ghoreishian Amiri ◽  
Feng Zhu ◽  
Gudmund Reidar Eiksund ◽  
...  

AbstractA systematical testing program on frozen Onsøy clay under isotropic loading and undrained shearing at different temperatures (− 3 ~ − 10 °C), strain rates (0.2~5%/h) and initial Terzaghi effective stress (20~400 kPa) was conducted with the focus on pore pressure development. It is meant to increase the understanding and facilitate the development of an ‘effective stress’-based model for multi-physical analysis for frozen soils. This study adopted the pore pressure measurement method suggested by Arenson and Springman (Can Geotech J 42 (2):412–430, 2005. https://doi.org/10.1139/t04-111) and developed a new testing procedure for frozen soils, including a ‘slow’ freezing method for sample preparation and post-freezing consolidation for securing hydraulic pressure equilibrium. The B-value of frozen soils is less than 1 and significantly dependent on temperature and loading history. The dilative tendency or pore pressure development in an undrained shearing condition is found to be dependent on both unfrozen water content and mean stress, which is consistent with unfrozen soils. Besides, the experimental results reported in the literature regarding uniaxial tests show that the shear strength does not share the same temperature- and salinity-dependency for different frozen soil types. The rate dependency of frozen soils is characterized between rate dependency of pure ice and that of the unfrozen soil and is therefore highly determined by the content of ice and the viscous behavior of ice (through temperature dependency). This paper also explains the pore pressure response in freezing and thawing is dependent on volumetric evolution of soil skeleton.


2021 ◽  
Author(s):  
Hongwei Liu ◽  
Pooneh Maghoul ◽  
Ahmed Shalaby

Abstract. The adverse effects of climate warming on the built environment in (sub)arctic regions are unprecedented and accelerating. Planning and design of climate-resilient northern infrastructure as well as predicting deterioration of permafrost from climate model simulations require characterizing permafrost sites accurately and efficiently. Here, we propose a novel algorithm for analysis of surface waves to quantitatively estimate the physical and mechanical properties of a permafrost site. We show the existence of two types of Rayleigh waves (R1 and R2; R1 travels relatively faster than R2). The R2 wave velocity is highly sensitive to the physical properties (e.g., unfrozen water content, ice content, and porosity) of permafrost or soil layers while it is less sensitive to their mechanical properties (e.g., shear modulus and bulk modulus). The R1 wave velocity, on the other hand, depends strongly on the soil type and mechanical properties of permafrost or soil layers. In-situ surface wave measurements revealed the experimental dispersion relations of both types of Rayleigh waves from which relevant properties of a permafrost site can be derived by means of our proposed hybrid inverse and multi-phase poromechanical approach. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately. Our proposed technique can be used in early detection and warning systems to monitor infrastructure impacted by permafrost-related geohazards, and to detect the presence of layers vulnerable to permafrost carbon feedback and emission of greenhouse gases into the atmosphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Li ◽  
Laisheng Huang ◽  
Xiaoquan Lv ◽  
Yongjie Ren

AbstractTo determine the unfrozen water content variation characteristics of coal from the low temperature freezing based on the good linear relationship between the amplitude of the nuclear magnetic resonance (NMR) signal and movable water, pulsed NMR technology was used to test water-saturated coal samples and analyze the relationship between the unfrozen water content, the temperature and pore pressure during freeze–thaw from a microscopic perspective. Experimental results show that the swelling stress of the ice destroys the original pore structure during the freezing process, causing the melting point of the pore ice to change, so the unfrozen water content during the melting process presents a hysteresis phenomenon. When phase equilibrium has been established in the freezing process, the unfrozen water is mainly the film water on the pore surface and pore water in pores with pore radius below 10 nm. At this time, the freezing point of the water in the system decreases exponentially as the temperature increases. The micropores of the coal samples from the Jiulishan Coalmine are well-developed, and the macropores and fractures are relatively small, with most pores having a pore radius between 0.1 and 10 nm. The pore water freezing point gradually decreases with the pore radius. When the pore radius decreases to 10 nm, the freezing point of pore water starts to decrease sharply with the decreasing pore radius. When the pore radius reaches 1.54 nm, the pore water freezing point changes as fast as 600 ℃/nm.


2021 ◽  
Vol 51 (1) ◽  
pp. 20210049
Author(s):  
Junping Ren ◽  
Shoulong Zhang ◽  
Chong Wang ◽  
Tatsuya Ishikawa ◽  
Sai K. Vanapalli

Sign in / Sign up

Export Citation Format

Share Document