3D Gravity Inversion of a Faulted Basement Relief Using the Total Variation Regularization

Author(s):  
V. C. F. Barbosa ◽  
C. M. Martins ◽  
W. A. Lima ◽  
J. B. C. Silva
Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. I13-I20 ◽  
Author(s):  
Williams A. Lima ◽  
Cristiano M. Martins ◽  
João B. Silva ◽  
Valeria C. Barbosa

We applied the mathematical basis of the total variation (TV) regularization to analyze the physicogeologic meaning of the TV method and compared it with previous gravity inversion methods (weighted smoothness and entropic Regularization) to estimate discontinuous basements. In the second part, we analyze the physicogeologic meaning of the TV method and compare it with previous gravity inversion methods (weighted smoothness and entropic regularization) to estimate discontinuous basements. Presenting a mathematical review of these methods, we show that minimizing the TV stabilizing function favors discontinuous solutions because a smooth solution, to honor the data, must oscillate, and the presence of these oscillations increases the value of the TV stabilizing function. These three methods are applied to synthetic data produced by a simulated 2D graben bordered by step faults. TV regularization and weighted smoothness are also applied to the real anomaly of Steptoe Valley, Nevada, U.S.A. In all applications, the three methods perform similarly. TV regularization, however, has the advantage, compared with weighted smoothness, of requiring no a priori information about the maximum depth of the basin. As compared with entropic regularization, TV regularization is much simpler to use because it requires, in general, the tuning of just one regularization parameter.


Author(s):  
Laian de Moura Silva ◽  
Marcos Alberto Rodrigues Vasconcelos ◽  
Vinamra Agrawal ◽  
Alvaro Penteado Crósta ◽  
Emilson Pereira Leite

2021 ◽  
Vol 1918 (2) ◽  
pp. 022033
Author(s):  
Supriyadi ◽  
E Wijanarko ◽  
Khumaedi
Keyword(s):  

2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


2011 ◽  
Vol 82 (9) ◽  
pp. 093504 ◽  
Author(s):  
Weixin Qian ◽  
Shuangxi Qi ◽  
Wanli Wang ◽  
Jinming Cheng ◽  
Dongbing Liu

Sign in / Sign up

Export Citation Format

Share Document