RefPick: A GUI Application to Pick First Arrival Times and Data Processing on Seismic Refraction Data

Author(s):  
K.H. Coban ◽  
M. Senkaya ◽  
H. Karslı
2015 ◽  
Vol 18 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Mustafa Senkaya ◽  
Hakan Karslı

<p class="MsoNormal" style="line-height: 200%;">The high-quality interpretation of seismic refraction data depends on the accurate and reliable identification of the first arrival times. First arrivals can be identified on a graphic or image by conventional picking, but this process depends on external factors, such as the scale and quality of the imaging data, amplitude ratio, sensitivity of the picking cursor and user experience. Under these considerations, identifying first arrivals in noisy data becomes more complex and unstable. In this study, the Cross-Correlation Technique (CCT), which is widely used in the process of analyzing reflection data, has been used to pick the first arrival times in noisy or noiseless seismic refraction data by a semi-automatic process. The CCT has reduced the dependence on user and decreased incorrect picking caused by environmental noise, displaying characteristics and scaling factors. The CCT has been tested with synthetic models with different noise contents and various field data. The Chi-square error criterion was used to assess the performance of the pickings. In addition, effects of small-time differences between the conventional picking process and the CCT have been demonstrated on a refraction tomography velocity section. Therefore, we believe that our proposed method is a useful contribution to the existing methods of first arrival picking.</p><p class="MsoNormal" style="line-height: 200%;"> </p><p class="MsoNormal" style="line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="line-height: 200%;">La buena interpretación de datos estadísticos de refracción sísmica depende de la identificación acertada y confiable de los tiempos de llegada. Los primeros tiempos de llegada se pueden identificar en un gráfico o imagen por picado convencional, pero este proceso depende de factores externos como la escala y la calidad de información de la imagen, el índice de amplitud, la sensibilidad del cursor de recolección y la experiencia del usuario. Bajo estas consideraciones, la identificación de los tiempos de llegada bajo información ruidosa se vuelve más compleja e inestable. En este estudio, la técnica de Correlación Cruzada (CCT, en inglés), que es ampliamente trabajada en el proceso de análisis de datos de reflexión, se utilizó para seleccionar los primeros tiempos de llegada en información sísmica ruidosa o no ruidosa con un proceso semiautomático. La CCT redujo la dependencia en el usuario y bajó el nivel de selección incorrecta causada por el ruido ambiental al desplegar características y factores de escala. La CCT se ha probado en modelos sintéticos con diferentes contenidos de ruidos y diversa información de campo. El error de la norma Chi-cuadrado se utilizó para evaluar el desempeño de las selecciones. En adición, los efectos de las pequeñas diferencias de tiempo entre el proceso convencional de selección y la CCT se han demostrado en una tomografía reflexiva de velocidad. Además, se estima que el método propuesto es una contribución útil a los métodos existentes de la recolección de los primeros tiempos de llegada.</p>


Geophysics ◽  
1970 ◽  
Vol 35 (4) ◽  
pp. 613-623 ◽  
Author(s):  
K. L. Kaila ◽  
Hari Narain

A new statistical method is described for the interpretation of seismic refraction data. This method is then applied to the interpretation of a seismic refraction profile 15,220 m long shot by the Oil and Natural Gas Commission of India along the Hoshiarpur‐Tanda road in Punjab State. The 14th iteration least squares straight line fit made to the traveltimes of first refracted arrivals gives for the Hoshiarpur area five layers 144, 322, 726, 769, and 1711 m thick with velocities of 1667, 1906, 2209, 2778, and 3505 m/sec respectively above the basement at a depth of 3672±11 m. The basement velocity is found to be 6514 m/sec. Analysis of later refracted arrivals indicates the existence of a hidden layer with a velocity 4280 m/sec in the Hoshiarpur area. Due to the presence of the hidden layer, the fifth layer with a thickness of 1711 m computed from first arrival analysis is split into two layers with thicknesses of 1160±10 and 752±18 m; the 752‐m‐thick layer is the hidden layer. As a result of the hidden layer, the computed basement depth increases to 3873±21 m. The importance of later refracted arrivals for the solution of hidden layer problems in refraction seismology is duly stressed. An extension of Green’s method (1962) for determining the possible range of a hidden layer thickness beneath a multiple layer overburden is given and applied to the field problem discussed in this paper.


Geophysics ◽  
1986 ◽  
Vol 51 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Robert W. Lankston ◽  
Marian M. Lankston

A critical parameter in interpreting seismic refraction data with the generalized reciprocal method (GRM) is the reciprocal time, which must be available for each layer from which refracted rays return to the surface. The reciprocal time can be measured in the field, but this requires special equipment or procedures. Shooting to obtain the reciprocal time from each layer along a long seismic line may be operationally impractical. However, the method of phantoming arrivals overcame the problems. In phantoming, a reciprocal time is actually measured along any length of the seismic refraction line for any refractor and that value can be used as the reciprocal time in GRM processing if the first‐break arrival times are phantomed properly. Realizing that the reciprocal time may be extracted from overlapping normal forward and reverse shots and phantoming the data accordingly will save much field time and expense. An example shows the results of using a reciprocal time measured across one spread for simultaneously processing and interpreting collinear, overlapping spreads.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
Tran Anh Vu* ◽  
Dinh Van Toan ◽  
Doan Van Tuyen ◽  
Lai Hop Phong ◽  
Duong Thi Ninh ◽  
...  

2001 ◽  
Vol 34 (4) ◽  
pp. 1309
Author(s):  
Τ. ΠΑΠΑΔΟΠΟΥΛΟΣ ◽  
Π. ΚΑΜΠΟΥΡΗΣ ◽  
Ι. ΑΛΕΞΟΠΟΥΛΟΣ

A comparative study of conventional and modern processing techniques of seismic refraction data is examined in this paper, for shallow structure investigation in the framework of a geotechnical research. The techniques used here were applied for the detection of narrow and low seismic velocity zones along the bedrock in the 10.5th Km of the new national road Igoumenitsa-Ioannina. The results were comparable and only slight deviations were observed due mainly to different algorithm procedures applied on data and the resolution provided by each technique. It is pointed out that the non linear tomography seismic refraction technique, overcomes the conventional ones since by increasing the number of seismic sources and considering the gradual variation of seismic velocity with depth, a better resolution and image reconstruction for the subsurface structure is obtained.


Sign in / Sign up

Export Citation Format

Share Document