Finite Volume Method for Modelling Gas Flow in Shale

Author(s):  
P. Lorinczi ◽  
A.D. Burns ◽  
D. Lesnic ◽  
Q.J. Fisher ◽  
A.J. Crook ◽  
...  
2017 ◽  
Vol 49 ◽  
pp. 394-414 ◽  
Author(s):  
Piroska Lorinczi ◽  
Alan D. Burns ◽  
Daniel Lesnic ◽  
Quentin J. Fisher ◽  
Anthony J. Crook ◽  
...  

2013 ◽  
Vol 274 ◽  
pp. 378-382
Author(s):  
Hong Wei Zhou ◽  
Yong Chen ◽  
Jin Cong Wang ◽  
Xiao Zhou Huang

Inflatable pipe is an important part of the tokamak's experimental device. This paper first introduces the composition, functions and working mode of the inflatable pipe. Then it's based on the fluid dynamics to establish model of the inflatable pipeline and the nodes. Finally, using the finite volume method to complete a numerical analysis of gas flow in the tokamak's pipeline. The results show that, if it needs to get the gas flow of the H2 that is 400 Pa•m3/s at the valve in the Pipeline, it needs to set the value of the inlet pressure that is 1.5 bar. The larger diameter of the pipeline, the more increase rate of gas flow in the pipeline.


Author(s):  
Valery Ponyavin ◽  
Roald Akberov ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Darrell W. Pepper

The calculation of gas flow during the motion of a projectile in the gun barrel is a complicated computational task due of the presence of numerous factors, such as nonisothermicity, turbulence, changes in the shape of the computational domain with time, etc. In this study, an attempt to calculate the characteristics of gas flow around a projectile during the motion of the projectile in the gun barrel is undertaken. The flow is considered axisymmetrical, nonstationary, nonisothermal, compressible, and turbulent. For calculating the flow around the projectile, the finite volume method was employed. During the motion of the projectile, the flow pattern behind it changed from subsonic to supersonic. The results of the calculations are represented in figures depicting the flow at different moments of time. The figures show the fields of velocity, pressure and density, as well as the appearance of shock waves inside the gun barrel at subsonic and supersonic speeds.


Sign in / Sign up

Export Citation Format

Share Document