inlet pressure
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 104)

H-INDEX

20
(FIVE YEARS 2)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Yanju Li ◽  
Dongxu Li ◽  
Zheshu Ma ◽  
Meng Zheng ◽  
Zhanghao Lu

Since the high temperature proton exchange membrane fuel cells (HT-PEMFC) stack require a range of auxiliary equipments to maintain operating conditions, it is necessary to consider operation of related components in the design of HT-PEMFC systems. In this paper, a thermodynamic model of a vehicular HT-PEMFC system using phosphoric acid doped polybenzimidazole membrane is developed. The power distribution and exergy loss of each component are derived according to thermodynamic analysis, where the stack and heat exchanger are the two components with the greatest exergy loss. In addition, ecological functions and improvement potentials are proposed to evaluate the system performance better. On this basis, the effects of stack inlet temperature, pressure, and stoichiometric on system performance are analyzed. The results showed that the energy efficiency, exergy efficiency and net output power of the system achieved the maximum when the inlet gases temperature is 406.1 K. The system performance is better when the cathode inlet pressure is relatively low and the anode inlet pressure is relatively high. Moreover, the stoichiometry should be reduced to improve the system output performance on the basis of ensuring sufficient gases reaction in the stack.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Dongxu Li ◽  
Yanju Li ◽  
Zheshu Ma ◽  
Meng Zheng ◽  
Zhanghao Lu

Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathematical expression for energy efficiency, power density, exergy destruction and exergetic performance coefficient (EPC) are derived. Then, the relationship between the dimensionless power density, exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared. Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power density and improve its efficiency, so EPC represents a better performance criterion. In addition, increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.


2022 ◽  
Vol 12 (1) ◽  
pp. 478
Author(s):  
Guotao Huo ◽  
Zhonghai Ma ◽  
Yeqing Huang ◽  
Songlin Nie ◽  
Zhenhua Zhang

Under the requirement of clean production, a new type of slurry blast device for mechanically removing oxide scale on the surface of steel strips is presented, which can avoid the serious problems of rapid wear, low service life, and low efficiency of the traditional abrasive water jet with a nozzle. In this paper, the numerical simulation of the rotating blade centrifugal jet in the slurry blast device is conducted based on CFD, where the DPM and the erosion model are innovatively employed to simulate the movement characteristics of abrasive particles and the erosion rate of mixed slurry on the surface of the steel strip. Simulation results show that the erosion rate and particle motion velocity are proportional to the blade rotation speed and inlet pressure. Reasonable inlet pressure and rotation speed are helpful for improving the rust removal efficiency of slurry blast devices. An experimental system is established to validate the simulation results. The experimental results are consistent with the simulation trend, which exhibits that the developed slurry blast device is feasible for steel strip descaling. This work will play substantial guiding roles in the engineering optimization of slurry blast devices for steel strip descaling.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Xiumei Liu ◽  
Jie He ◽  
Yongwei Xie ◽  
Beibei Li ◽  
Yujia Zhang ◽  
...  

A multi-field synchronous measurement system for the cavitation flow in a regulating valve was established. The system combines a high-speed full-flow field display system with a pressure measurement system to realize the simultaneous acquisition of cavitation shapes and pressure pulsations. Cavitation flow occurs near the throttle orifice, which is obviously a quasi-periodic behavior. The unsteady cavitation flow mainly includes three stages: the growth of the attached cavity, the fracture and shedding of the attached cavity and the growth and collapse of the free cavity. The time evolution of the cavitation behaviors is highly related with excited pressure fluctuations. With the increasing attached cavity area, the corresponding pressure in the flow field decreases slowly. When the attached cavity falls off and develops downstream, the cavity area decreases gradually, and the pressure increases gradually. When the free cavity shrinks and collapses, the pressure in the flow field reaches the peak value. The pressure pulsation and the change of cavity area have the same dominant frequency, around 2000 Hz, at the monitoring point in the upstream, throat and expansion monitoring points. Furthermore, with increasing inlet pressure, the mean and variance values of cavitation area become larger, and the excited pressure fluctuation at each measuring point becomes more intense. The mean value of pulsating pressure at the throat gradually increases, while the pressure in the expansion section presents a downward trend. The variance of pressure pulsation and the maximum pressure also increase gradually with the increase in inlet pressure. The change of cavitation area and the pressure pulsation in the regulating valve complement each other. The results in this paper could provide experimental guidance on optimizing the structure of the valve, inhibiting cavitation occurrence and prolonging the service life of the valve.


Author(s):  
Borivoj K. Adnađević ◽  
Ivan R. Nikolić ◽  
Svetozar A. Milenković ◽  
Jelena D. Jovanović

Abstract The effect of operating parameters such as reaction mixture inlet pressure p 1 (101.3–1013.2 kPa), methanol to oil molar ratio M 1 (3–12), the concentration of catalyst C c (0.0–1.0 wt%), temperature T (25–50 °C) and the number of passes of the reaction mixture through the venturi type hydrodynamic cavitation reactor n (1–12) on alkali-catalyzed transesterification of sunflower oil with methanol assisted by hydrodynamic cavitation (ACTC) on the value of the degree of triglyceride conversion (DTC) was investigated. ACTC was performed by the venturi-type hydrodynamic cavitation reactor (VCR) of our construction. It was found that the values of DTC increase with the increase in p 1, M 1, C c, and n, and decrease with the increase in T. Cavitation yield (CY) values were calculated. The ACTC was proved to be the simplest, fastest, and most highly energy-efficient current technology for the production of biodiesel.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongtao Ji ◽  
Weigang Lu ◽  
Linguang Lu ◽  
Lei Xu ◽  
Jun Liu ◽  
...  

In engineering, the highest operating head of the pumping station is usually controlled to be slightly lower than the lowest saddle bottom head of the axial-flow pump. However, in the practical operation, it is found that the highest operating head of the pumping station is obviously lower than the saddle bottom head of the pump device, which leads to the reduction of the operating range of the pumping station. To investigate the difference of lowest saddle bottom head between axial flow pump and axial flow pump device and apply it correctly, the energy performance tests of the TJ04-ZL-06 hydraulic model and its corresponding pump device were carried out to obtain the external curves, and numerical simulation was carried out to analyze and compare the internal flow field and pressure distribution. The results show that when the flow rate decreases, the first saddle-shaped region of the axial-flow pump and the saddle-shaped region of the pump device are caused by the decrease of the lift coefficient due to the increase of the attack angle between flow and blade. When the flow rate is less than 0.32Qd, the influence range of backflow in the inlet pipe is large, which leads to the high-pressure zone near the wall of the inlet pressure measurement section during the pump performance test, and hence the second saddle-shaped region of the axial-flow pump is essentially a measurement illusion. It is suggested that the inlet pressure measurement section should be set at least 4Dp away from the inlet flange of the impeller when testing the performance of the axial-flow pump under the condition of small flow rate, and the first saddle bottom head of the axial-flow pump or the saddle bottom head of the corresponding pump device can be considered as the control value of the highest head of the pumping station.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012024
Author(s):  
Mingming Xing ◽  
Yanli Jia ◽  
Caifeng He ◽  
Weijia Wang ◽  
Yunjie Li ◽  
...  

Abstract With the progressive improvement of the level of mechanization of agricultural production, the high-gap rod sprayer has gradually become an important component of agricultural production equipment. The stability of spray rod has an important influence on the life and operation quality of spray rod. Therefore, considering the stability of the spray rod of high gap sprayer, a fluid-solid coupling vibration simulation model of the spray rod of high gap sprayer is established in this paper. The influence of inlet velocity, inlet pressure, fluid density and fluid viscosity on the flow rate and dynamic pressure in the pipe was analyzed by fluent. The results show that the exit velocity increases with the increase of the inlet velocity, but when the velocity reaches a certain value, backflow occurs. With the increase of inlet pressure, the dynamic pressure increases, and the local energy loss and the energy loss along the path also increase. The velocity and dynamic pressure decrease with increasing density.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012040
Author(s):  
Kangwei Yang ◽  
Xuewen He

Abstract In order to study the influence of the internal flow field of the fluidized bed opposed jet mill on the motion behavior of particles, Computational Fluid Dynamics (CFD) and Discrete Dlement Method (DEM) are used for coupling calculations. By adjusting the nozzle spacing and inlet pressure, Numerical simulation is carried out on the process of particles collisions with each other after accelerating under the high-speed jet produced by the nozzle. The trajectory of the particles in the flow field of the collision area and the change of the collision state of the particles are analyzed. Finally, the best parameters are selected based on the total collision energy. The results show that the particles will gradually shift and spread during the acceleration process. The reduction of the nozzle spacing is beneficial to increase the probability of particle collisions. However, if the spacing is too small, the particles cannot be fully accelerated; the increase in inlet pressure will increase the kinetic energy of the particles, and number of collisions is almost unaffected. By comparing the total collision energy, the best-simulated preparation conditions are selected as 110mm and 1.1MPa.


2021 ◽  
Author(s):  
Ivan Nikolić ◽  
Jelena Jovanović ◽  
Biljana Koturević ◽  
Borivoj Adnadjević

Abstract Method of independent variation of the value of one operating parameter has been used to investigate the effect of operating parameters on alkali-catalyzed transesterification of sunflower oil with methanol in presence of tetrahydrofuran (THF) as cosolvent, assisted by hydrodynamic cavitation (ACTC) on the value of the degree of triglyceride conversion (DTC). ACTC was performed by a venturi-type hydrodynamic cavitation reactor (VCR) of our construction. To determine the effect of ACTC on DTC following operating parameters were varied: reaction mixture inlet pressure (p1) from 202.3 kPa to 1013.2 kPa; methanol to oil molar ratio (M1) from M1=3 to M1=12; concentration of catalyst (Cc) from 0.3wt% to 1.5wt%; methanol to THF molar ratio (M2) from M2=1.25 to M2=2.0; temperature (T) from 20°C to 55°C, number of passes through the VCR (n) from n=1 to n=10. It was found, based on the obtained results, that: a) the values of DTC increase with the increase in p1, M1, Cc, and n, b) the values of the DTC decrease with the increase in T and c) maximum values of the DTC are obtained at Cc=1.0~1.1wt% and M2=1.5.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110534
Author(s):  
Peifeng Lin ◽  
Donghui Lei ◽  
Jiang Liao

Experimental and numerical methods are used to locate the pipeline leakage in the present work. The weak compressibility of the fluid is taken into account when simulating the propagation of negative pressure wave (NPW) in the pipeline. The NPW attenuation coefficient is used to describe the influences of curvature radius on location accuracy. The results indicate that when the curvature radius is small, the location accuracy of pipeline leakage is low. When the radius of curvature increases or the inlet pressure increases, the accuracy of pipeline leak location is improved. Besides, with the change of inlet pressure, pressure, and velocity distributions in the elbow with different curvature radii are investigated. When the curvature radius of the elbow is three to four times of pipe diameter, the measurement accuracy of leakage location is the best. When the inlet pressure of the pipeline is 0.7 MPa, the sensitivity of the pipeline detection is the highest. The cavitation corrosion at the elbow is the most obvious. Therefore, the elbow is the area where pipeline leakage occurs most frequently.


Sign in / Sign up

Export Citation Format

Share Document