A Derivative Free Optimization Method Adapted to Partially Separable Functions for History Matching Problems

Author(s):  
B. Marteau ◽  
D. Ding ◽  
L. Dumas
2021 ◽  
Author(s):  
Faruk Alpak ◽  
Yixuan Wang ◽  
Guohua Gao ◽  
Vivek Jain

Abstract Recently, a novel distributed quasi-Newton (DQN) derivative-free optimization (DFO) method was developed for generic reservoir performance optimization problems including well-location optimization (WLO) and well-control optimization (WCO). DQN is designed to effectively locate multiple local optima of highly nonlinear optimization problems. However, its performance has neither been validated by realistic applications nor compared to other DFO methods. We have integrated DQN into a versatile field-development optimization platform designed specifically for iterative workflows enabled through distributed-parallel flow simulations. DQN is benchmarked against alternative DFO techniques, namely, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method hybridized with Direct Pattern Search (BFGS-DPS), Mesh Adaptive Direct Search (MADS), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). DQN is a multi-thread optimization method that distributes an ensemble of optimization tasks among multiple high-performance-computing nodes. Thus, it can locate multiple optima of the objective function in parallel within a single run. Simulation results computed from one DQN optimization thread are shared with others by updating a unified set of training data points composed of responses (implicit variables) of all successful simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by a linear-interpolation technique using all or a subset of training-data points. The gradient of the objective function is analytically computed using the estimated sensitivities of implicit variables with respect to explicit variables. The Hessian matrix is then updated using the quasi-Newton method. A new search point for each thread is solved from a trust-region subproblem for the next iteration. In contrast, other DFO methods rely on a single-thread optimization paradigm that can only locate a single optimum. To locate multiple optima, one must repeat the same optimization process multiple times starting from different initial guesses for such methods. Moreover, simulation results generated from a single-thread optimization task cannot be shared with other tasks. Benchmarking results are presented for synthetic yet challenging WLO and WCO problems. Finally, DQN method is field-tested on two realistic applications. DQN identifies the global optimum with the least number of simulations and the shortest run time on a synthetic problem with known solution. On other benchmarking problems without a known solution, DQN identified compatible local optima with reasonably smaller numbers of simulations compared to alternative techniques. Field-testing results reinforce the auspicious computational attributes of DQN. Overall, the results indicate that DQN is a novel and effective parallel algorithm for field-scale development optimization problems.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 081-104 ◽  
Author(s):  
Yimin Liu ◽  
Louis J. Durlofsky

Summary In this study, we explore using multilevel derivative-free optimization (DFO) for history matching, with model properties described using principal-component-analysis (PCA) -based parameterization techniques. The parameterizations applied in this work are optimization-based PCA (O-PCA) and convolutional-neural-network (CNN) -based PCA (CNN-PCA). The latter, which derives from recent developments in deep learning, is able to accurately represent models characterized by multipoint spatial statistics. Mesh adaptive direct search (MADS), a pattern-search method that parallelizes naturally, is applied for the optimizations required to generate posterior (history-matched) models. The use of PCA-based parameterization considerably reduces the number of variables that must be determined during history matching (because the dimension of the parameterization is much smaller than the number of gridblocks in the model), but the optimization problem can still be computationally demanding. The multilevel strategy introduced here addresses this issue by reducing the number of simulations that must be performed at each MADS iteration. Specifically, the PCA coefficients (which are the optimization variables after parameterization) are determined in groups, at multiple levels, rather than all at once. Numerical results are presented for 2D cases, involving channelized systems (with binary and bimodal permeability distributions) and a deltaic-fan system using O-PCA and CNN-PCA parameterizations. O-PCA is effective when sufficient conditioning (hard) data are available, but it can lead to geomodels that are inconsistent with the training image when these data are scarce or nonexistent. CNN-PCA, by contrast, can provide accurate geomodels that contain realistic features even in the absence of hard data. History-matching results demonstrate that substantial uncertainty reduction is achieved in all cases considered, and that the multilevel strategy is effective in reducing the number of simulations required. It is important to note that the parameterizations discussed here can be used with a wide range of history-matching procedures (including ensemble methods), and that other derivative-free optimization methods can be readily applied within the multilevel framework.


2014 ◽  
Vol 63 (14) ◽  
pp. 149203
Author(s):  
Huang Qi-Can ◽  
Hu Shu-Juan ◽  
Qiu Chun-Yu ◽  
Li Kuan ◽  
Yu Hai-Peng ◽  
...  

2011 ◽  
Vol 312-315 ◽  
pp. 1073-1078 ◽  
Author(s):  
Pablo A. Muñoz-Rojas ◽  
M.A. Luersen ◽  
T.A. Carniel ◽  
E. Bertoti

Porous materials have gained wide use in high level engineering structures due to their high stiffness/weight ratio, good energy absorption properties, etc. Frequently, thermal behavior is also an issue of concern and optimized multifunctional thermo-mechanical responses are sought for. This paper presents the application of a hybrid two-stage method for achieving an optimized layout of periodic truss-like structures in order to obtain a good compromise between thermal and mechanical elastic properties. The first stage employs a derivative free optimization method, which explores the design space, not getting trapped by local minima. The second stage uses a derivative based optimization algorithm to perform a refinement of the solution obtained in the first stage.


Sign in / Sign up

Export Citation Format

Share Document