training image
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 96)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guo Qing ◽  
HuBao Hui

Aiming at the difficulty of standardizing the action of basketball shooting training, a new method of standardizing the action of basketball shooting training is proposed based on digital video technology. The digital video signal representation, video sequence coding data structure, and video sequence compression coding method are analyzed, and the pixels of basketball shooting training action position space are sampled to collect basketball shooting training images. The time difference method is used to extract the movement target of basketball shooting training from a digital video sequence. Based on digital video technology, the initial background image is estimated, and the update rate is introduced to update the background estimation image. According to the pixel value sequence of the basketball shooting training image, the pixel model of the basketball shooting training image is defined and modified. By judging whether the defined pixel value matches the background parameter model, the standardization of shooting training can be realized. The experimental results show that the proposed method has good stability, high precision, and short time in determining the standardization of shooting movement, can correct the wrong shooting movement in real time, and can effectively guide basketball shooting training.


2021 ◽  
Vol 13 (24) ◽  
pp. 5182
Author(s):  
Aaron Etienne ◽  
Aanis Ahmad ◽  
Varun Aggarwal ◽  
Dharmendra Saraswat

Current methods of broadcast herbicide application cause a negative environmental and economic impact. Computer vision methods, specifically those related to object detection, have been reported to aid in site-specific weed management procedures for targeted herbicide application within a field. However, a major challenge to developing a weed detection system is the requirement for a properly annotated database to differentiate between weeds and crops under field conditions. This research involved creating an annotated database of 374 red, green, and blue (RGB) color images organized into monocot and dicot weed classes. The images were acquired from corn and soybean research plots located in north-central Indiana using an unmanned aerial system (UAS) flown at 30 and 10 m heights above ground level (AGL). A total of 25,560 individual weed instances were manually annotated. The annotated database consisted of four different subsets (Training Image Sets 1–4) to train the You Only Look Once version 3 (YOLOv3) deep learning model for five separate experiments. The best results were observed with Training Image Set 4, consisting of images acquired at 10 m AGL. For monocot and dicot weeds, respectively, an average precision (AP) score of 91.48 % and 86.13% was observed at a 25% IoU threshold (AP @ T = 0.25), as well as 63.37% and 45.13% at a 50% IoU threshold (AP @ T = 0.5). This research has demonstrated a need to develop large, annotated weed databases to evaluate deep learning models for weed identification under field conditions. It also affirms the findings of other limited research studies utilizing object detection for weed identification under field conditions.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8444
Author(s):  
Jaehyeop Choi ◽  
Chaehyeon Lee ◽  
Donggyu Lee ◽  
Heechul Jung

Modern data augmentation strategies such as Cutout, Mixup, and CutMix, have achieved good performance in image recognition tasks. Particularly, the data augmentation approaches, such as Mixup and CutMix, that mix two images to generate a mixed training image, could generalize convolutional neural networks better than single image-based data augmentation approaches such as Cutout. We focus on the fact that the mixed image can improve generalization ability, and we wondered if it would be effective to apply it to a single image. Consequently, we propose a new data augmentation method to produce a self-mixed image based on a saliency map, called SalfMix. Furthermore, we combined SalfMix with state-of-the-art two images-based approaches, such as Mixup, SaliencyMix, and CutMix, to increase the performance, called HybridMix. The proposed SalfMix achieved better accuracies than Cutout, and HybridMix achieved state-of-the-art performance on three classification datasets: CIFAR-10, CIFAR-100, and TinyImageNet-200. Furthermore, HybridMix achieved the best accuracy in object detection tasks on the VOC dataset, in terms of mean average precision.


Iproceedings ◽  
10.2196/35391 ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. e35391
Author(s):  
Ibukun Oloruntoba ◽  
Toan D Nguyen ◽  
Zongyuan Ge ◽  
Tine Vestergaard ◽  
Victoria Mar

Background Convolutional neural networks (CNNs) are a type of artificial intelligence that show promise as a diagnostic aid for skin cancer. However, the majority are trained using retrospective image data sets of varying quality and image capture standardization. Objective The aim of our study is to use CNN models with the same architecture, but different training image sets, and test variability in performance when classifying skin cancer images in different populations, acquired with different devices. Additionally, we wanted to assess the performance of the models against Danish teledermatologists when tested on images acquired from Denmark. Methods Three CNNs with the same architecture were trained. CNN-NS was trained on 25,331 nonstandardized images taken from the International Skin Imaging Collaboration using different image capture devices. CNN-S was trained on 235,268 standardized images, and CNN-S2 was trained on 25,331 standardized images (matched for number and classes of training images to CNN-NS). Both standardized data sets (CNN-S and CNN-S2) were provided by Molemap using the same image capture device. A total of 495 Danish patients with 569 images of skin lesions predominantly involving Fitzpatrick skin types II and III were used to test the performance of the models. Four teledermatologists independently diagnosed and assessed the images taken of the lesions. Primary outcome measures were sensitivity, specificity, and area under the curve of the receiver operating characteristic (AUROC). Results A total of 569 images were taken from 495 patients (n=280, 57% women, n=215, 43% men; mean age 55, SD 17 years) for this study. On these images, CNN-S achieved an AUROC of 0.861 (95% CI 0.830-0.889; P<.001), and CNN-S2 achieved an AUROC of 0.831 (95% CI 0.798-0.861; P=.009), with both outperforming CNN-NS, which achieved an AUROC of 0.759 (95% CI 0.722-0.794; P<.001; P=.009). When the CNNs were matched to the mean sensitivity and specificity of the teledermatologists, the model’s resultant sensitivities and specificities were surpassed by the teledermatologists. However, when compared to CNN-S, the differences were not statistically significant (P=.10; P=.05). Performance across all CNN models and teledermatologists was influenced by the image quality. Conclusions CNNs trained on standardized images had improved performance and therefore greater generalizability in skin cancer classification when applied to an unseen data set. This is an important consideration for future algorithm development, regulation, and approval. Further, when tested on these unseen test images, the teledermatologists clinically outperformed all the CNN models; however, the difference was deemed to be statistically insignificant when compared to CNN-S. Conflicts of Interest VM received speakers fees from Merck, Eli Lily, Novartis and Bristol Myers Squibb. VM is the principal investigator for a clinical trial funded by the Victorian Department of Health and Human Services with 1:1 contribution from MoleMap.


2021 ◽  
Author(s):  
Ibukun Oloruntoba ◽  
Toan D Nguyen ◽  
Zongyuan Ge ◽  
Tine Vestergaard ◽  
Victoria Mar

BACKGROUND Convolutional neural networks (CNNs) are a type of artificial intelligence that show promise as a diagnostic aid for skin cancer. However, the majority are trained using retrospective image data sets of varying quality and image capture standardization. OBJECTIVE The aim of our study is to use CNN models with the same architecture, but different training image sets, and test variability in performance when classifying skin cancer images in different populations, acquired with different devices. Additionally, we wanted to assess the performance of the models against Danish teledermatologists when tested on images acquired from Denmark. METHODS Three CNNs with the same architecture were trained. CNN-NS was trained on 25,331 nonstandardized images taken from the International Skin Imaging Collaboration using different image capture devices. CNN-S was trained on 235,268 standardized images, and CNN-S2 was trained on 25,331 standardized images (matched for number and classes of training images to CNN-NS). Both standardized data sets (CNN-S and CNN-S2) were provided by Molemap using the same image capture device. A total of 495 Danish patients with 569 images of skin lesions predominantly involving Fitzpatrick skin types II and III were used to test the performance of the models. Four teledermatologists independently diagnosed and assessed the images taken of the lesions. Primary outcome measures were sensitivity, specificity, and area under the curve of the receiver operating characteristic (AUROC). RESULTS A total of 569 images were taken from 495 patients (n=280, 57% women, n=215, 43% men; mean age 55, SD 17 years) for this study. On these images, CNN-S achieved an AUROC of 0.861 (95% CI 0.830-0.889; <i>P</i>&lt;.001), and CNN-S2 achieved an AUROC of 0.831 (95% CI 0.798-0.861; <i>P</i>=.009), with both outperforming CNN-NS, which achieved an AUROC of 0.759 (95% CI 0.722-0.794; <i>P</i>&lt;.001; <i>P</i>=.009). When the CNNs were matched to the mean sensitivity and specificity of the teledermatologists, the model’s resultant sensitivities and specificities were surpassed by the teledermatologists. However, when compared to CNN-S, the differences were not statistically significant (<i>P</i>=.10; <i>P</i>=.05). Performance across all CNN models and teledermatologists was influenced by the image quality. CONCLUSIONS CNNs trained on standardized images had improved performance and therefore greater generalizability in skin cancer classification when applied to an unseen data set. This is an important consideration for future algorithm development, regulation, and approval. Further, when tested on these unseen test images, the teledermatologists <i>clinically</i> outperformed all the CNN models; however, the difference was deemed to be statistically insignificant when compared to CNN-S.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7785
Author(s):  
Jun Mao ◽  
Change Zheng ◽  
Jiyan Yin ◽  
Ye Tian ◽  
Wenbin Cui

Training a deep learning-based classification model for early wildfire smoke images requires a large amount of rich data. However, due to the episodic nature of fire events, it is difficult to obtain wildfire smoke image data, and most of the samples in public datasets suffer from a lack of diversity. To address these issues, a method using synthetic images to train a deep learning classification model for real wildfire smoke was proposed in this paper. Firstly, we constructed a synthetic dataset by simulating a large amount of morphologically rich smoke in 3D modeling software and rendering the virtual smoke against many virtual wildland background images with rich environmental diversity. Secondly, to better use the synthetic data to train a wildfire smoke image classifier, we applied both pixel-level domain adaptation and feature-level domain adaptation. The CycleGAN-based pixel-level domain adaptation method for image translation was employed. On top of this, the feature-level domain adaptation method incorporated ADDA with DeepCORAL was adopted to further reduce the domain shift between the synthetic and real data. The proposed method was evaluated and compared on a test set of real wildfire smoke and achieved an accuracy of 97.39%. The method is applicable to wildfire smoke classification tasks based on RGB single-frame images and would also contribute to training image classification models without sufficient data.


2021 ◽  
Author(s):  
Ibukun Oloruntoba ◽  
Tine Vestergaard ◽  
Toan D Nguyen ◽  
Zongyuan Ge ◽  
Victoria Mar

BACKGROUND Convolutional neural networks (CNNs) are a type of artificial intelligence (AI) which show promise as a diagnostic aid for skin cancer. However, the majority are trained using retrospective image datasets of varying quality and image capture standardisation. OBJECTIVE The objective of our study was to use CNN models with the same architecture, but different training image sets, and test variability in performance when classifying skin cancer images in different populations, acquired with different devices. Additionally, we wanted to assess the performance of the models against Danish tele-dermatologists, when tested on images acquired from Denmark. METHODS Three CNNs with the same architecture were trained. CNN-NS was trained on 25,331 non- standardised images taken from the International Skin Imaging Collaboration using different image capture devices. CNN-S was trained on 235,268 standardised images and CNN-S2 was trained on 25,331 standardised images (matched for number and classes of training images to CNN-NS). Both standardised datasets (CNN-S and CNN-S2) were provided by Molemap using the same image capture device. 495 Danish patients with 569 images of skin lesions predominantly involving Fitzpatrick's skin types II and III were used to test the performance of the models. 4 tele-dermatologists independently diagnosed and assessed the images taken of the lesions. Primary outcome measures were sensitivity, specificity and area under the curve of the receiver operating characteristic (AUROC). RESULTS 569 images were taken from 495 patients (280 women [57%], 215 men [43%]; mean age 55 years [17 SD]) for this study. On these images, CNN-S achieved an AUROC of 0.861 (CI 0.830 – 0.889; P=.001) and CNN-S2 achieved an AUROC of 0.831 (CI 0.798 – 0.861; P=.009), with both outperforming CNN-NS, which achieved an AUROC of 0.759 (CI 0.722 – 0.794; P=.001, P=.009) (Figure 1). When the CNNs were matched to the mean sensitivity and specificity of the tele-dermatologists, the model’s resultant sensitivities and specificities were surpassed by the tele-dermatologists (Table 1). However, when compared to CNN-S, the differences were not statistically significant (P=.10, P=.053). Performance across all CNN models as well as tele- dermatologists was influenced by image quality. CONCLUSIONS CNNs trained on standardised images had improved performance and therefore greater generalisability in skin cancer classification when applied to an unseen dataset. This is an important consideration for future algorithm development, regulation and approval. Further, when tested on these unseen test images, the tele-dermatologists ‘clinically’ outperformed all the CNN models; however, the difference was deemed to be statistically insignificant when compared to CNN-S. CLINICALTRIAL This retrospective diagnostic comparative study was approved by the Monash University Human Ethics Committee, Melbourne, Australia (Project ID: 28130).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6311
Author(s):  
Woldeamanuel Minwuye Mesfin ◽  
Soojin Cho ◽  
Jeongmin Lee ◽  
Hyeong-Ki Kim ◽  
Taehoon Kim

The objective of this study is to evaluate the feasibility of deep-learning-based segmentation of the area covered by fresh and young concrete in the images of construction sites. The RGB images of construction sites under various actual situations were used as an input into several types of convolutional neural network (CNN)–based segmentation models, which were trained using training image sets. Various ranges of threshold values were applied for the classification, and their accuracy and recall capacity were quantified. The trained models could segment the concrete area overall although they were not able to judge the difference between concrete of different ages as professionals can. By increasing the threshold values for the softmax classifier, the cases of incorrect prediction as concrete became almost zero, while some areas of concrete became segmented as not concrete.


2021 ◽  
Author(s):  
Jiaxin Yu ◽  
Florian Wellmann ◽  
Simon Virgo ◽  
Marven von Domarus ◽  
Mingze Jiang ◽  
...  

Training data is the backbone of developing either Machine Learning (ML) models or specific deep learning algorithms. The paucity of well-labeled training image data has significantly impeded the applications of ML-based approaches, especially the development of novel Deep Learning (DL) methods like Convolutional Neural Networks (CNNs) in mineral thin section images identification. However, image annotation, especially pixel-wise annotation is always a costly process. Manually creating dense semantic labels for rock thin section images has been long considered as an unprecedented challenge in view of the ubiquitous variety and complexity of minerals in thin sections. To speed up the annotation, we propose a human-computer collaborative pipeline in which superpixel segmentation is used as a boundary extractor to avoid hand delineation of instances boundaries. The pipeline consists of two steps: superpixel segmentation using MultiSLIC, and superpixel labeling through a specific-designed tool. We use a cutting-edge methodology Virtual Petroscopy (ViP) for automatic image acquisition. Bentheimer sandstone sample is used to conduct performance testing of the pipeline. Three standard error metrics are used to evaluate the performance of MultiSLIC. The result indicates that MultiSLIC is able to extract compact superpixels with satisfying boundary adherence given multiple input images. According to our test results, large and complex thin section images with pixel-wisely accurate labels can be annotated with the labeling tool more efficiently than in a conventional, purely manual work, and generate data of high quality.


2021 ◽  
Author(s):  
Chihiro Yukawa ◽  
Tetsuya Oda ◽  
Nobuki Saito ◽  
Aoto Hirata ◽  
Kyohei Toyoshima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document