Electrical Methods, Tools for Water Resource Assessment in a Semi Arid Areas – Case Study in Hebron Mountains

Author(s):  
A. Sirhan ◽  
M. Hamidi
2018 ◽  
Vol 120 ◽  
pp. 422-431 ◽  
Author(s):  
Qichun Yang ◽  
James E. Almendinger ◽  
Xuesong Zhang ◽  
Maoyi Huang ◽  
Xingyuan Chen ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1328 ◽  
Author(s):  
Xiaoxiang Guan ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Xuemei Li ◽  
Jing Liu ◽  
...  

Conducting water resource assessment and forecasting at a basin scale requires effective and accurate simulation of the hydrological process. However, intensive, complex human activities and environmental changes are constraining and challenging the hydrological modeling development and application by complicating the hydrological cycle within its local contexts. Six sub-catchments of the Yellow River basin, the second-largest river in China, situated in a semi-arid climate zone, have been selected for this study, considering hydrological processes under a natural period (before 1970) and under intensive human disturbance (2000–2013). The study aims to assess the capacity and performance of the hydrological models in simulating the discharge under a changing environment. Four well-documented and applied hydrological models, i.e., the Xin’anjiang (XAJ) model, GR4J model, SIMHYD model, and RCCC-WBM (Water Balance Model developed by Research Center for Climate Change) model, were selected for this assessment. The results show that (1) the annual areal temperature of all sub-catchments presented a significant rising trend, and annual precipitation exhibited insignificant decline trend; (2) as a result of climate change and intensive human activities, the annual runoff series showed a declining trend with abrupt changes mostly occurring in the 1980s with the exception of the Tangnaihai station; (3) the four hydrological models generally performed well for runoff simulation for all sub-catchments under the natural period. In terms of Nash–Sutcliffe efficiency coefficient, the XAJ model worked better in comparison to other hydrological models due to its detailed representations and complicated mechanism in runoff generation and flow-routing scheme; (4) environmental changes have impacted the performance of the four hydrological models under all sub-catchments, in particularly the Pianguan River catchment, which is could be attributed to the various human activities that in turn represent more complexity for the regional hydrological cycle to some extent, and reduce the ability to predict the runoff series; (5) the RCCC-WBM model, well known for its simple structure and principles, is considered to be acceptable for runoff simulation for both natural and human disturbance periods, and is recommended for water resource assessment under changing environments for semi-arid regions.


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Jinming Yang ◽  
Chengzhi Li

AbstractSnow depth mirrors regional climate change and is a vital parameter for medium- and long-term numerical climate prediction, numerical simulation of land-surface hydrological process, and water resource assessment. However, the quality of the available snow depth products retrieved from remote sensing is inevitably affected by cloud and mountain shadow, and the spatiotemporal resolution of the snow depth data cannot meet the need of hydrological research and decision-making assistance. Therefore, a method to enhance the accuracy of snow depth data is urgently required. In the present study, three kinds of snow depth data which included the D-InSAR data retrieved from the remote sensing images of Sentinel-1 synthetic aperture radar, the automatically measured data using ultrasonic snow depth detectors, and the manually measured data were assimilated based on ensemble Kalman filter. The assimilated snow depth data were spatiotemporally consecutive and integrated. Under the constraint of the measured data, the accuracy of the assimilated snow depth data was higher and met the need of subsequent research. The development of ultrasonic snow depth detector and the application of D-InSAR technology in snow depth inversion had greatly alleviated the insufficiency of snow depth data in types and quantity. At the same time, the assimilation of multi-source snow depth data by ensemble Kalman filter also provides high-precision data to support remote sensing hydrological research, water resource assessment, and snow disaster prevention and control program.


Sign in / Sign up

Export Citation Format

Share Document