Integrated Gravity Modeling, a Tool to Unravel Basin Architecture - Case Study from Saouaf basin, Northeastern Tunisian Atlas

Author(s):  
H. Mouakhar ◽  
H. Gabtni ◽  
A. Bel Kahla
Author(s):  
Mohamed Sadok Bensalem ◽  
Mohamed Hedi Bensalem ◽  
Soulef Amamria ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

2015 ◽  
Vol 03 (01) ◽  
pp. 22-30
Author(s):  
Soulef Amamria ◽  
Mohamed Sadok Bensalem ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

2019 ◽  
Vol 4 (3) ◽  
pp. 280 ◽  
Author(s):  
La Ode Nursalam ◽  
A Arisona ◽  
R Ramli ◽  
La Harudu ◽  
Sitti Kasmiati ◽  
...  

A microgravity investigation on bedrock topography was conducted at Maluri park reference level in Kuala Lumpur, Malaysia. The study aim to mapping the near-surface structure and soil and land cover distribution for geography and geophysics surveys.  Two types of cross-section modeling of the residual anomaly generated the MaluriBouguer Anomaly model for site-1 and site-2 at Maluri Park. The 2D microgravity models produced the contour map, displaying the characterization due to density contrast in rock types while mapping the subsurface geological structure at different depths. Moreover, a synthetic model was initiated with the assumption of lateral distance on the left and right sides taken at 50 m and a depth of 60 m. The results of modeling confirmed that the soil and rock type composition on both models site tests are topsoil (1.1 to 1.92 g/cm3), soil (1.8 g/cm3), clay (1.63 g/cm3), gravel (1.7 g/cm3), sand (2.0 g/cm3), shale (2.4 g/cm3), sandstone (2.76 g/cm3), and limestone (2.9 g/cm3). The 2D gravity modeling using two model site tests obtained a correspondence with the observed microgravity data. Keywords: Bouguer anomaly, limestone, microgravity, soil structure, topography. References Amaluddin, L. O., Rahmat, R., Surdin, S., Ramadhan, M. I., Hidayat, D. N., Purwana, I. G., & Fayanto, S. (2019). The Effectiveness of Outdoor Learning in Improving Spatial Intelligence. Journal for the Education of Gifted Young Scientists, 7(3), 667–680. https://doi.org/10.17478/jegys.613987 Arisona,A., Mohd N., Amin E.K., &Abdullahi, A.(2018).Assessment of microgravity anomalies of soil structure for geotechnical 2d models.Journal of Geoscience, Engineering, Environment, and Technology (JGEET)3(3), 151-154. Georgsson, L.S. (2009). Geophysical Methotds Used in Geothermal Exploration. Presented at Exploration for Geothermal Resources, 1-22 November 2009, 1-16. Grandjean, G. (2009). From Geophysical Parameters to Soil Characteristics.Florida: Report N°BRGM/FP7-DIGISOIL Project Deliverable 2.1, Final ReportDepartment of Civil and Coastal EngineeringUniversity of Florida. Hiltunen, D.R., Hudyma,N.,Tran,K.T.,&Sarno,A.I. (2012).Geophysical Testing of Rock and Its Relationthipsto Physical Properties.Florida:Final ReportDepartment ofCivil and Coastal EngineeringUniversity ofFlorida. Kirsch,R. (2006).GroundwaterGeophysics, ATool for Hydrogeology.New York: Springer. Kamal,H.,Taha,M.,&Al-Sanad,S. (2010). Geoenvironmental Engineering and Geotechnics, GeoShanghai 2010 International Conference. (accessed 02.03.17) Lilie, R.J. (1999).Whole Earth Geophysics: An Introductory Textbook for Geologists and Geophysicists. New Jersey:Prentice-HallInc. Pringle, J.K., Styles, P., Howell, C.P.,Branston, M.W., Furner, R., &Toon,S.M. (2012). Long-term time-lapse microgravity and geotechnical monitoring of relict salt mines, marston, cheshire, uk. Geophysic77(6), 165-171. Samsudin, H.T.(2003).A microgravity survey over deep limestone bedrock.Bulletin of Geological Society of Malaysia4(6), 201-208. Tan, S.M. (2005). Karsticfeatures of kualalumpur limestone. Bulletin of the Institution of EnginnerMalaysia 4(7), 6-11. Tajuddin, A.&Lat, C.N. (2004).Detecting subsurfacevoids using the microgravity method, a case study from kualalipis, pahang.Bulletin of Geological Society of Malaysia 3(48), 31-35.  Tuckwell, G., Grossey, T., Owen, S., & Stearns, P. (2008). The use of microgravity to detect small distributed voids and low-density ground. Quarterly Journal of Engineering Geology and Hydrogeology, 41(3), 371–380. https://doi.org/10.1144/1470-9236/07-224  Wanjohi, A.W. (2014). Geophysical Field Mapping. Presented at Exploration for Geothermal Resources, 2-23 November 2014, 1-9. Yusoff , Z.M., Raju,G. &Nahazanan, H.(2016).Static and dynamic behaviour of kualalumpur limestone. Malaysian Journal of Civil Engineering  Special Issue Vol.28 (1), p.:18-25. Zabidi, H. & De Freitas, M.H. (2011).Re-evaluation of rock core logging for the prediction of preferred orientations of karst in the kualalumpur limestone formation. Engineering Geology, 117(3-4), p.: 159–169.   Copyright (c) 2019 Geosfera Indonesia Journal and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Khaled Lazzez ◽  
Mohamed Sadok Bensalem ◽  
Marzouk Lazzez ◽  
Achraf Boulares ◽  
Mohamed Ghanmi

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE313-VE319 ◽  
Author(s):  
Stig-Kyrre Foss ◽  
Mark Rhodes ◽  
Bjørn Dalstrøm ◽  
Christian Gram ◽  
Alastair Welbon

We present the geologically constrained workflow for velocity-model building as a case study from offshore Brazil. The workflow involves basin reconstruction, gravity modeling, and seismic interpretation in addition to standard prestack depth migration (PSDM) model-building tools. Building a salt model based on seismic evidence can be highly nonunique. In a geologically constrained seismic-processing workflow, the main aim is to use geologic understanding with geophysical models and datasets to improve an input velocity realization for the PSDM loop, thereby improving image quality. All of these methods are inherently uncertain, and a final model is based on a range of subjective choices. Thus a final result that agrees with all sciences still can be completely wrong. However, an understanding of these choices enables a unique way of testing and constraining the number of antimodels: velocity models that fit the observations but are different from the final result. This can reduce time spent and uncertainty in geologic evaluation.


2016 ◽  
Vol 67 (4) ◽  
pp. 391-401 ◽  
Author(s):  
Mohamed Sadok Bensalem ◽  
Soulef Amamria ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

Abstract The quantification of deformation is one of the main objectives studied by geologists in order to control the evolution of tectonic structures and their kinematics during different tectonic phases. One of the most reliable methods of this theme is the direct calculation of quantity of deformation based on field data, while respecting several parameters such as the notion of tectonic inheritance and reactivation of pre-existing faults, or the relationship between the elongation and shortening axis with major faults. Thus, such a quantification of deformation in an area may explain the relations of thin- and thick-skinned tectonics during this deformation. The study of structural evolution of the Jebel Elkebar domain in the southern-central Tunisian Atlas permits us to quantify the deformation during the extensional phase by a direct calculation of the vertical throw along normal faults. This approach is verified by calculation of thickness of eroded strata in the uplifted compartment and of resedimented series, named the Kebar Formation, in the downthrown compartment. The obtained results confirm the importance of the Aptian-Albian extensional tectonic regime. The extent of deformation during the compressional phase, related to reactivation of pre-existing faults, is less than that of extensional phases; indeed the compressive reactivation did not compensate the vertical throw of normal faults. The geometry of the Elkebar fold is interpreted in terms of the “fault-related fold” model with a décollement level in the Triassic series. This permitted the partition of deformation between the basement and cover, so that the basement was allowed for a limited transport only, and the maximum of observed deformation was concentrated in the thin-skinned tectonics.


Sign in / Sign up

Export Citation Format

Share Document