geothermal resources
Recently Published Documents


TOTAL DOCUMENTS

1050
(FIVE YEARS 272)

H-INDEX

28
(FIVE YEARS 5)

Geothermics ◽  
2022 ◽  
Vol 100 ◽  
pp. 102321
Author(s):  
Christian Michel Lacasse ◽  
Elias Martins Guerra Prado ◽  
Suze Nei Pereira Guimarães ◽  
Oderson Antônio de Souza Filho ◽  
Fábio Pinto Vieira

Energy Policy ◽  
2022 ◽  
Vol 161 ◽  
pp. 112705
Author(s):  
Kabir Nadkarni ◽  
Lianne M. Lefsrud ◽  
Daniel Schiffner ◽  
Jonathan Banks

2022 ◽  
Vol 154 ◽  
pp. 111865
Author(s):  
R. Duggal ◽  
R. Rayudu ◽  
J. Hinkley ◽  
J. Burnell ◽  
C. Wieland ◽  
...  

Desalination ◽  
2022 ◽  
Vol 524 ◽  
pp. 115450
Author(s):  
Michał Kaczmarczyk ◽  
Barbara Tomaszewska ◽  
Wiesław Bujakowski
Keyword(s):  

2022 ◽  
Vol 9 ◽  
Author(s):  
Yifan Fan ◽  
Shikuan Zhang ◽  
Yonghui Huang ◽  
Zhonghe Pang ◽  
Hongyan Li

Recoverable geothermal resources are very important for geothermal development and utilization. Generally, the recovery factor is a measure of available geothermal resources in a geothermal field. However, it has been a pre-determined ratio in practice and sustainable utilization of geothermal resources was not considered in the previous calculation of recoverable resources. In this work, we have attempted to develop a method to calculate recoverable geothermal resources based on a numerical thermo-hydraulic coupled modeling of a geothermal reservoir under exploitation, with an assumption of sustainability. Taking a geothermal reservoir as an example, we demonstrate the effectiveness of the method. The recoverable geothermal resources are 6.85 × 1018 J assuming a lifetime of 100 years in a well doublet pattern for geothermal heating. We further discuss the influence of well spacing on the recoverable resources. It is found that 600 m is the optimal well spacing with maximum extracted energy that conforms to the limit of the pressure drop and no temperature drop in the production well. Under the uniform well distribution pattern for sustainable exploitation, the recovery factor is 26.2%, which is higher than the previous value of 15% when depending only on lithology. The proposed method for calculating the recoverable geothermal resources is instructive for making decisions for sustainable exploitation.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Xu ◽  
Xiaoyin Tang ◽  
Luyao Cheng ◽  
Ying Dong ◽  
Yuping Zhang ◽  
...  

The Xi’an Depression of the Weihe Basin, located in the transition zone where the North China, Qinling and Yangtze plates collide with each other, is an important area of geothermal energy utilization in China. Studies of heat flow and thermal sources are of great significance to the exploration and development of geothermal resources in this area. In this paper, six temperature logs boreholes, and 14 thermal conductivity samples have been used to study the geothermal gradient and terrestrial heat flow in the area. The results show that the geothermal gradients of Xi’an Depression range from 20.8 C/km to 49.1 C/km, with an average of 31.7 ± 5.0 C/km. The calculated heat flow is 59.4–88.6 mW/m2, and the average value is 71.0 ± 6.3 mW/m2, which indicates a high thermal background in the area. The high anomalous zones are near the Lintong-Chang’an Fault zone in the southeast, the Weihe Fault in the north, and the Fenghe Fault in the central Xi’an Depression. These deep and large faults not only control the formation of the Xi’an Depression but also provide an important channel for the circulation of groundwater and affect the characteristics of the shallow geothermal distribution. The temperature of the Moho in the Xi’an Depression ranges from 600 to 700°C, and the thermal lithosphere thickness is about 90–100 km. The characteristics of lithospheric thermal structure in Xi’an Depression indicate that the higher thermal background in the study area is related to lithospheric extension and thinning and asthenosphere thermal material upwelling.


2022 ◽  
Author(s):  
Yahui Yao ◽  
Xiaofeng Jia ◽  
Shengtao Li ◽  
Qiuxia Zhang ◽  
Jian Song ◽  
...  

Abstract Carbonate karst geothermal resources are widely distributed and have large reserves in North China. Nowadays, the scale of exploitation and utilization of the carbonate karst geothermal resources is gradually increasing. In this work, a geothermal exploitation area where the karst geothermal reservoirs are exploited on a large scale, is selected as the study area, and methods including experiment and numerical simulation are used to study the exploitation-induced ground subsidence problems based on the long-term water level monitoring data of the geothermal reservoir. Through analyses of ground subsidence caused by water level change of the geothermal reservoir, the following conclusions were obtained. The water level drawdown of different types of geothermal reservoirs had different effects on ground subsidence. The maximum ground subsidence of the study area caused by the water level decline of the Jx w carbonate geothermal reservoir was only 0.29 mm/a from 1983 to 2019, which is generally insignificant. In contrast, the same water level change of the N m sandstone geothermal reservoir was predicted to cause 8.9 mm/a ground subsidence. To slow down or even prevent the ground subsidence, balanced production and reinjection are required. From the result of this work, the decline of the water level of the Jx w carbonate geothermal reservoir caused by current large-scale geothermal exploitation will not cause serious ground subsidence. However, attention should be paid to the N m sandstone type geothermal reservoirs as their structures are much more sensitive to the water pressure change.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yonghui Huang ◽  
Yuanzhi Cheng ◽  
Lu Ren ◽  
Fei Tian ◽  
Sheng Pan ◽  
...  

Assessment of available geothermal resources in the deep oil field is important to the synergy exploitation of oil and geothermal resources. A revised volumetric approach is proposed in this work for evaluating deep geothermal potential in an active oil field by integrating a 3D geological model into a hydrothermal (HT)-coupled numerical model. Based on the analysis of the geological data and geothermal conditions, a 3D geological model is established with respect to the study area, which is discretized into grids or elements represented in the geological model. An HT-coupled numerical model was applied based on the static geological model to approximate the natural-state model of the geothermal reservoir, where the thermal distribution information can be extracted. Then the geothermal resource in each small grid element is calculated using a volumetric method, and the overall geothermal resource of the reservoirs can be obtained by making an integration over each element of the geological model. A further parametric study is carried out to investigate the influence of oil and gas saturations on the overall heat resources. The 3D geological model can provide detailed information on the reservoir volume, while the HT natural-state numerical model addressed the temperature distribution in the reservoir by taking into account complex geological structures and contrast heterogeneity. Therefore, integrating the 3D geological modeling and HT numerical model into the geothermal resource assessment improved its accuracy and helped to identify the distribution map of the available geothermal resources, which indicate optimal locations for further development and utilization of the geothermal resources. The Caofeidian new town Jidong oil field serves as an example to depict the calculation workflow. The simulation results demonstrate in the Caofeidian new town geothermal reservoir that the total amount of geothermal resources, using the proposed calculation method, is found to be 1.23e+18 J, and the total geothermal fluid volume is 8.97e+8 m3. Moreover, this approach clearly identifies the regions with the highest potential for geothermal resources. We believe this approach provides an alternative method for geothermal potential assessment in oil fields, which can be also applied globally.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 151
Author(s):  
Shuiping Zhu ◽  
Jianjun Sun ◽  
Kaiyang Zhong ◽  
Haisheng Chen

Ground source heat pumps (GSHPs), a high-efficiency and energy-saving air-conditioning technology that utilizes shallow geothermal resources for both heating and cooling, are a vital green energy system for residential and commercial buildings. Improving the performance of such a system was the focus of the current research. As soil temperature and thermal radius are two important aspects that affect the performance of ground source heat pump systems, we conducted a new numerical simulation to capture the changes in sensitive factors and propose the optimized paths. The numerical simulation analyzed the thermal characteristics of a borefield under different pre-cooling times and soil types. The results indicated the following: (1) The rate of the ground temperature change with pre-cooling during the discharging period had a faster rise than in the case without pre-cooling. The longer the precooling time was, the smaller the thermal radius became. In particular, when the precooling time was longer than 14 days, the decrease in the thermal radius rate percentages was less than 4%. (2) Among the three kinds of soils compared, the soils with lower thermal conductivity and thermal diffusivity best suppressed the thermal interference effects. (3) Using a multivariate nonlinear function regression model, a simulation formula was proposed to predict- the thermal radius, which considered the factors of thermal diffusivity, precooling time, and discharging time. The prediction deviation was within 14.8%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yibo Wang ◽  
Yang Bai ◽  
Lijuan Wang ◽  
Junpeng Guan ◽  
Yaqi Wang ◽  
...  

Geothermal resources, as an important member of clean renewable energy, of which the exploration, development, and utilization of geothermal resources, especially deep geothermal resources, are of great significance for achieving carbon peaking and carbon neutrality. Taking the North Jiangsu Basin (NJB) as an example, this paper reviews the exploration process of deep geothermal resources in the basin and presents the latest results. The study shows that the NJB is a typical “hot basin” with an average heat flow value of 68 mW/m2. In this region, the deep geothermal resource favorable areas in the NJB are mainly distributed in the depressions, in particular those near the Jianhu uplift, i.e., the Yanfu depression and the Dongtai depression. In addition, the genesis mechanism of the deep geothermal resource favorable area in the NJB is best explained by the “two stages, two sources” thermal concentration, that is, “two stages” means that the transformation of the lithospheric thermal regime are caused by the late Mesozoic craton destruction in East China, and the Cenozoic lithospheric extension; these two tectono-thermal events together lead to the deep anomalous mantle-source heat (the first source), and the upper crustal-scale heat control is mainly caused by thermal refraction (the second source). Overall, this case study underlines new ideas of understanding the geothermal genesis mechanism in East China, which can guide for the exploration and development of deep geothermal resources at the basin scale.


Sign in / Sign up

Export Citation Format

Share Document