growth strata
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 46)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 104488
Author(s):  
Hanlin Chen ◽  
Yuqing Zhang ◽  
Xiaogan Cheng ◽  
Xiubin Lin ◽  
Hongdan Deng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
A. Martínez-Doñate ◽  
A. M-L. J. Privat ◽  
D. M. Hodgson ◽  
C. A-L. Jackson ◽  
I. A. Kane ◽  
...  

Submarine landslides can generate complicated patterns of seafloor relief that influence subsequent flow behaviour and sediment dispersal patterns. In subsurface studies, the term mass transport deposits (MTDs) is commonly used and covers a range of processes and resultant deposits. While the large-scale morphology of submarine landslide deposits can be resolved in seismic reflection data, the nature of their upper surface and its impact on both facies distributions and stratal architecture of overlying deposits is rarely resolvable. However, field-based studies often allow a more detailed characterisation of the deposit. The early post-rift Middle Jurassic deep-water succession of the Los Molles Formation is exceptionally well-exposed along a dip-orientated WSW-ENE outcrop belt in the Chacay Melehue depocentre, Neuquén Basin, Argentina. We correlate 27 sedimentary logs constrained by marker beds to document the sedimentology and architecture of a >47 m thick and at least 9.6 km long debrite, which contains two different types of megaclasts. The debrite overlies ramps and steps, indicating erosion and substrate entrainment. Two distinct sandstone-dominated units overlie the debrite. The lower sandstone unit is characterised by: 1) abrupt thickness changes, wedging and progressive rotation of laminae in sandstone beds associated with growth strata; and 2) detached sandstone load balls within the underlying debrite. The combination of these features suggests syn-sedimentary foundering processes due to density instabilities at the top of the fluid-saturated mud-rich debrite. The debrite relief controlled the spatial distribution of foundered sandstones. The upper sandstone unit is characterised by thin-bedded deposits, locally overlain by medium-to thick-bedded lobe axis/off-axis deposits. The thin-beds show local thinning and onlapping onto the debrite, where it develops its highest relief. Facies distributions and stacking patterns record the progradation of submarine lobes and their complex interaction with long-lived debrite-related topography. The emplacement of a kilometre-scale debrite in an otherwise mud-rich basinal setting and accumulation of overlying sand-rich deposits suggests a genetic link between the mass-wasting event and transient coarse clastic sediment supply to an otherwise sand-starved part of the basin. Therefore, submarine landslides demonstrably impact the routing and behaviour of subsequent sediment gravity flows, which must be considered when predicting facies distributions and palaeoenvironments above MTDs in subsurface datasets.


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2145-2157
Author(s):  
Olivier Lacombe ◽  
Nicolas E. Beaudoin ◽  
Guilhem Hoareau ◽  
Aurélie Labeur ◽  
Christophe Pecheyran ◽  
...  

Abstract. Dating syntectonic sedimentary sequences is often seen as the unique way to constrain the initiation, duration, and rate of folding as well as the sequence of deformation in the shallow crust. Beyond fold growth, however, deformation mesostructures accommodate the internal strain of pre-folding strata before, during, and after strata tilting. Absolute dating of syn-folding mesostructures may help constrain the duration of fold growth in the absence of preserved growth strata. Absolute dating of mesostructures related to early-folding layer-parallel shortening and late fold tightening provides an access to the timing and duration of the entire folding event. We compile available ages from the literature and provide new U–Pb ages of calcite cements from veins and faults from four folds (Apennines, Pyrenees, Rocky Mountains). Our results not only better constrain the timing of fold growth but also reveal a contraction preceding and following folding, the duration of which might be a function of the tectonic style and regional sequence of deformation. This study paves the way for a better appraisal of folding lifetime and processes and stress evolution in folded domains.


2021 ◽  
pp. M57-2018-26
Author(s):  
David W. Houseknecht

AbstractThe Arctic Alaska region includes three composite tectono-sedimentary elements (CTSEs): the (1) Arctic Alaska Basin (AAB), (2) Hanna Trough (HT), and (3) Beaufortian Rifted Margin (BRM) CTSEs. These CTSEs comprise Mississippian to Lower Cretaceous (Neocomian) strata beneath much of the Alaska North Slope, the Chukchi Sea and westernmost North Slope, and Beaufort Sea, respectively. These sedimentary successions rest on Devonian and older sedimentary and metasedimentary rocks, considered economic basement, and are overlain by Cretaceous to Cenozoic syn- and post-tectonic strata deposited in the foreland of the Chukotka and Brooks Range orogens and in the Amerasia Basin. (1) The Mississippian-Neocomian AAB CTSE includes two TSEs: (a) The Ellesmerian Platform TSE comprises mainly shelf strata of Mississippian to Middle Jurassic age and includes a relatively undeformed domain in the north and a fold-and-thrust domain in the south. (b) The Beaufortian Rift Shoulder TSE includes Middle Jurassic to Neocomian deposits related to rift-shoulder uplift. (2) The HT CTSE includes four TSEs: (a) The Ellesmerian Syn-Rift TSE comprises Late Devonian(?) to Middle Mississippian growth strata deposited in grabens and half grabens during intracontinental rifting. (b) The Ellesmerian-Beaufortian Sag-Basin TSE comprises Middle Mississippian to Upper Triassic strata deposited in a sag basin following cessation of rifting. (c) The Beaufortian Syn-Rift TSE comprises Jurassic to Neocomian graben-fill deposits related to rifting in the Amerasia and North Chukchi Basins. (d) The Beaufortian Rift-Shoulder TSE comprises Jurassic to Neocomian strata related to rifting and deposited outside rift basins. (3) The BRM CTSE includes two TSEs: (a) The Beaufortian Syn-Rift TSE comprises Middle Jurassic to Neocomian syn-rift strata deposited on attenuated continental crust associated with opening of the Amerasia Basin. (b) The Ellesmerian Platform TSE comprises mainly shelf strata of Mississippian to Middle Jurassic age that lie beneath Beaufortian syn-rift strata.The AAB, HT, and BRM CTSEs contain oil-prone source rocks in Triassic, Jurassic, and Cretaceous strata and proven reservoir rocks spanning Mississippian to Lower Cretaceous strata. A structurally high-standing area in the northern AAB CTSE, northern HT CTSE, and southernmost BRM CTSE lies in the oil window whereas all other areas lie in the gas window. Known hydrocarbon accumulations in the three CTSEs total more than 30 billion barrels of oil equivalent and yet-to-find estimates suggest a similar volume remains to be discovered.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stuart Hardy ◽  
Nestor Cardozo

Thrust faults, and thrust wedges, are an important part of the surface morphology and structure of many contractional mountain belts. Analogue models of thrust wedges typically provide a map- and/or side-view of their evolution but give limited insight into their dynamic development. Numerical modelling studies, both kinematic and mechanical, have produced much insight into the various controls on thrust wedge development and fault propagation. However, in many studies, syn-tectonic sediments or “growth strata” have been modelled solely as passive markers and thus have no effect on, or do not feedback into, the evolving system. To address these issues, we present a high-resolution, 2D, discrete element model of thrust fault and wedge formation and the influence that coeval sedimentation may have on their evolution. We use frictional-cohesive assemblies, with flexural-slip between pre-defined layers, to represent probable cover rheologies. The syn-tectonic strata added during contraction are frictional-cohesive and we can think of them as “mechanical growth strata” as they interact with, and influence, the growing thrust wedge. In experiments of thrust wedge development without syn-tectonic sedimentation, a forward-breaking sequence is seen: producing a typical thrust-wedge geometry, consistent with analogue and numerical models. In general, the inclusion of syn-tectonic sedimentation produces thrust wedges composed of fewer major forward-vergent thrusts and with only minor thrust activity in the foreland. In most of these models the sequence of thrust activity is complex and not simply forward-breaking. With increasing sedimentation, the frontal thrust has much greater displacement and overrides a much thicker package of earlier syn-tectonic sediments. Very high syn-tectonic sedimentation results in the formation of a single basin-bounding thrust fault and no thrust-wedge per se. At the local (outcrop) scale of individual fault-related folds, high syn-tectonic sedimentation alters fault-fold evolution by producing steeper ramps, whereas low syn-tectonic sedimentation allows shallower ramps that may flatten and propagate into the syn-tectonic strata. Implications of these results for the interpretation of thrust faults and wedges and their interaction with associated growth strata are discussed.


2021 ◽  
Author(s):  
Ander Martínez-Doñate ◽  
Aurelia Privat ◽  
David Hodgson ◽  
Chris Jackson ◽  
Ian Kane ◽  
...  

Submarine landslides can generate complicated patterns of seafloor relief that influence subsequent flow behaviour and sediment dispersal patterns. While the large-scale morphology of submarine landslide deposits, or mass transport deposits (MTDs), can be resolved in seismic data, the nature of their upper surface, and its impact on facies distributions and stratal architecture of overlying deposits, is rarely resolvable. MTD is a commonly used term in subsurface studies, covering a range of processes and resultant deposits that can not be resolved in seismic or core-based datasets. However, field-based studies often allow a more detailed characterisation of the deposit. The early post-rift Middle Jurassic deep-water succession of the Los Molles Formation is exceptionally well-exposed along a dip-orientated WSW-ENE outcrop belt in the Chacay Melehue depocentre, Neuquén Basin, Argentina. We correlate 27 sedimentary logs constrained by marker beds to document the sedimentology and architecture of a >47 m thick and at least 9.6 km long mud-rich debrite. The debrite overlies ramps and steps, indicating erosion and substrate entrainment. Megaclasts sourced from shallow-marine environments support a shallow marine origin of the mass failure. Two distinct sandstone-dominated units overlie the debrite. The lower sandstone unit is characterised by: i) abrupt thickness changes, wedging and progressive rotation of laminae in sandstone beds associated with growth strata; and ii) detached sandstone load balls within the underlying debrite. The combination of these features suggests syn-sedimentary foundering processes due to density instabilities at the top of the fluid-saturated mud-rich debrite. The debrite relief controlled the spatial distribution of foundered sandstones. The upper sandstone unit is characterised by thin-bedded deposits, locally overlain by medium- to thick-bedded lobe axis/off-axis deposits. The thin-beds show local thinning and onlapping onto the debrite, where it develops its highest relief. Facies distributions and stacking patterns record the progradation of submarine lobes and their complex interaction with long-lived debrite-related topography. These characteristics can help us understand post-depositional processes above MTDs and predict facies distributions and palaeoenvironments in subsurface datasets. The emplacement of a kilometre-scale debrite in an otherwise mud-rich basinal setting and accumulation of overlying sand-rich deposits suggests a genetic link between the mass-wasting event and transient coarse clastic sediment supply to an otherwise sand-starved part of the basin.


2021 ◽  
Author(s):  
Ander Martínez-Doñate ◽  
Aurelia Privat ◽  
David Hodgson ◽  
Chris Jackson ◽  
Ian Kane ◽  
...  

Submarine landslides can generate complicated patterns of seafloor relief that influence subsequent flow behaviour and sediment dispersal patterns. While the large-scale morphology of submarine landslide deposits, or mass transport deposits (MTDs), can be resolved in seismic data, the nature of their upper surface, and its impact on facies distributions and stratal architecture of overlying deposits, is rarely resolvable. MTD is a commonly used term in subsurface studies, covering a range of processes and resultant deposits that can not be resolved in seismic or core-based datasets. However, field-based studies often allow a more detailed characterisation of the deposit. The early post-rift Middle Jurassic deep-water succession of the Los Molles Formation is exceptionally well-exposed along a dip-orientated WSW-ENE outcrop belt in the Chacay Melehue depocentre, Neuquén Basin, Argentina. We correlate 27 sedimentary logs constrained by marker beds to document the sedimentology and architecture of a >47 m thick and at least 9.6 km long mud-rich debrite. The debrite overlies ramps and steps, indicating erosion and substrate entrainment. Megaclasts sourced from shallow-marine environments support a shallow marine origin of the mass failure. Two distinct sandstone-dominated units overlie the debrite. The lower sandstone unit is characterised by: i) abrupt thickness changes, wedging and progressive rotation of laminae in sandstone beds associated with growth strata; and ii) detached sandstone load balls within the underlying debrite. The combination of these features suggests syn-sedimentary foundering processes due to density instabilities at the top of the fluid-saturated mud-rich debrite. The debrite relief controlled the spatial distribution of foundered sandstones. The upper sandstone unit is characterised by thin-bedded deposits, locally overlain by medium- to thick-bedded lobe axis/off-axis deposits. The thin-beds show local thinning and onlapping onto the debrite, where it develops its highest relief. Facies distributions and stacking patterns record the progradation of submarine lobes and their complex interaction with long-lived debrite-related topography. These characteristics can help us understand post-depositional processes above MTDs and predict facies distributions and palaeoenvironments in subsurface datasets. The emplacement of a kilometre-scale debrite in an otherwise mud-rich basinal setting and accumulation of overlying sand-rich deposits suggests a genetic link between the mass-wasting event and transient coarse clastic sediment supply to an otherwise sand-starved part of the basin.


2021 ◽  
Author(s):  
Ahmed Alghuraybi ◽  
Rebecca Bell ◽  
Chris Jackson

Extensional growth folds form ahead of the tips of propagating normal faults. These folds can accommodate a considerable amount of extensional strain and they may control rift geometry. Fold-related surface deformation may also control the sedimentary evolution of syn-rift depositional systems; thus, the stratigraphic record can constrain the four-dimensional evolution of extensional growth folds, which in term provides a record of fault growth and broader rift history. Here we use high-quality 3D seismic reflection and borehole data from the SW Barents Sea, offshore northern Norway to determine the geometric and temporal evolution of extensional growth folds associated with a large, long-lived, basement-involved fault. We show that the fault grew via linkage of four segments, and that fault growth was associated with the formation of fault-parallel and fault-perpendicular folds that accommodated a substantial portion (10 – 40%) of the total extensional strain. Fault-propagation folds formed at multiple times in response to periodic burial of the causal fault, with individual folding events (c. 25 Myr and 32 Myr) lasting a considered part of the total, c. 130 Myr rift period. Our study supports previous suggestions that continuous (i.e., folding) as well as discontinuous (i.e., faulting) deformation must be explicitly considered when assessing total strain in extensional setting. We also show changes in the architecture of growth strata record alternating periods of how folding and faulting, showing how rift margins may be characterised by basinward-dipping monoclines as opposed to fault-bound scarps. Our findings have broader implications for our understanding of the structural, physiographic, and tectonostratigraphic evolution of rift basins.


Author(s):  
David J. Anastasio ◽  
Kenneth P. Kodama ◽  
Josep M. Parés ◽  
Linda A. Hinnov ◽  
Bruce D. Idleman

Sign in / Sign up

Export Citation Format

Share Document