Kinematic Evolution Model of Fault-Related Anticline based on the Study of the Striated Pebbles of the Related Growth-Strata: A Case Study of the Es Satah Anticline in Southern Tunisian Atlas, Tunisia

Geotectonics ◽  
2019 ◽  
Vol 53 (3) ◽  
pp. 419-432
Author(s):  
C. Khalfi ◽  
R. Ahmadi ◽  
H. Trigui ◽  
J. Ouali ◽  
E. Mercier
2016 ◽  
Vol 67 (4) ◽  
pp. 391-401 ◽  
Author(s):  
Mohamed Sadok Bensalem ◽  
Soulef Amamria ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

Abstract The quantification of deformation is one of the main objectives studied by geologists in order to control the evolution of tectonic structures and their kinematics during different tectonic phases. One of the most reliable methods of this theme is the direct calculation of quantity of deformation based on field data, while respecting several parameters such as the notion of tectonic inheritance and reactivation of pre-existing faults, or the relationship between the elongation and shortening axis with major faults. Thus, such a quantification of deformation in an area may explain the relations of thin- and thick-skinned tectonics during this deformation. The study of structural evolution of the Jebel Elkebar domain in the southern-central Tunisian Atlas permits us to quantify the deformation during the extensional phase by a direct calculation of the vertical throw along normal faults. This approach is verified by calculation of thickness of eroded strata in the uplifted compartment and of resedimented series, named the Kebar Formation, in the downthrown compartment. The obtained results confirm the importance of the Aptian-Albian extensional tectonic regime. The extent of deformation during the compressional phase, related to reactivation of pre-existing faults, is less than that of extensional phases; indeed the compressive reactivation did not compensate the vertical throw of normal faults. The geometry of the Elkebar fold is interpreted in terms of the “fault-related fold” model with a décollement level in the Triassic series. This permitted the partition of deformation between the basement and cover, so that the basement was allowed for a limited transport only, and the maximum of observed deformation was concentrated in the thin-skinned tectonics.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Lope Ezquerro ◽  
Aránzazu Luzón ◽  
José L. Simón ◽  
Carlos L. Liesa

Abstract The northern part of the eastern margin of the extensional Neogene Teruel Basin (central-eastern Spain) consists of a non-linear, zigzag fault zone made of alternating ca. 2 km long, NNW-SSE trending segments and shorter NNE-SSW ones. Good outcrop conditions made possible a comprehensive integrated stratigraphic and structural study, especially focused on coarse clastic sediments deposited along the basin margin. Well-exposed stratal relationships with boundary faults, allowed the analysis of tectonic influence on sedimentation. Synsedimentary deformation includes growth faulting, rollover anticlines, and monoclines and associated onlap stratal terminations, angular unconformities, and other complex growth strata geometries. One of them is the onlap-over-rollover bed arrangement described here for the first time, which reveals the competition between tectonic subsidence and sedimentary supply. Both, the structural inheritance (dense Mesozoic fracture grid) and the dominant, nearly ‘multidirectional’ (σ1 vertical, σ2 ≈ σ3), Pliocene extensional regime with σ3 close to E-W, are considered to have controlled the margin structure and evolution. Tectono-stratigraphic evolution includes: (i) reactivation of inherited NNW-SSE faults and development of W-SW-directed small alluvial fans (SAF) while NNE-SSW segments acted as gentle relay ramp zones; (ii) progressive activation of NNE-SSW faults and development of NW-directed very small alluvial fans (VSAF); during stages i and ii sediments were trapped close to the margin, avoiding widespread progradation; (iii) linking of NNW-SSE and NNE-SSW structural segments, overall basin sinking and widespread alluvial progradation; (iv) fault activity attenuation and alluvial retrogradation. The particular structure and kinematic evolution of this margin controlled alluvial system patterns. Size of alluvial fans, directly set up at the border faults, was conditioned by the narrowness of the margin, small catchment areas, and proximity between faults, which prevented the development of large alluvial fans. The size of the relay zones, only a few hundred meters wide, acted in the same way, avoiding them to act as large sediment transfer areas and large alluvial fans to be established. These features make the Teruel Basin margin different to widely described extensional margins models.


2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


Author(s):  
Mohamed Sadok Bensalem ◽  
Mohamed Hedi Bensalem ◽  
Soulef Amamria ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

2015 ◽  
Vol 03 (01) ◽  
pp. 22-30
Author(s):  
Soulef Amamria ◽  
Mohamed Sadok Bensalem ◽  
Mohamed Ghanmi ◽  
Fouad Zargouni

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jianfeng Zhu ◽  
Shenzhen Tian

Urban lakes have been threatened by rapid expansion of cities in recent years. Their area changes could be extracted by remote sensing technologies. On this basis, a Dynamic Urban Lake Area Evolution Model (DULAEM) is proposed based on a multiagent system (MAS) and a cellular automata (CA) model. The DULAEM is integrated upon an Urban Lake Multilevel Grid (ULMG), which is composed of the vector model with the raster model. In the DULAEM, the CA layer is mainly used for modelling the interactions between urban lakes and their surrounding land use change through the activity of each cell; the MAS layer represents the actions of three typical human activities: government, real estate developers, and residents. These three agents have different actions in extent, strength, and priority according to their standpoints and functions. The CA layer and the MAS layer are both integrated upon the ULMG. Finally, a case study in Wuhan proves that the DULAEM can control the global relative error under 10%. Therefore, the DULAEM is able to simulate the area change of urban lakes dynamically. It is significant for the policy-making of lake protection and the optimal configuration of land resources in the lakeside.


Sign in / Sign up

Export Citation Format

Share Document