Gaussian Mixture Model Fitting Method For Uncertainty Quantification By Conditioning To Production Data

Author(s):  
G. Gao ◽  
H. Jiang Inc. ◽  
J.C. Vink ◽  
C. Chen ◽  
Y. El Khamra Inc. ◽  
...  
2019 ◽  
Vol 24 (2) ◽  
pp. 663-681
Author(s):  
Guohua Gao ◽  
Hao Jiang ◽  
Jeroen C. Vink ◽  
Chaohui Chen ◽  
Yaakoub El Khamra ◽  
...  

2021 ◽  
Author(s):  
Guohua Gao ◽  
Jeroen Vink ◽  
Fredrik Saaf ◽  
Terence Wells

Abstract When formulating history matching within the Bayesian framework, we may quantify the uncertainty of model parameters and production forecasts using conditional realizations sampled from the posterior probability density function (PDF). It is quite challenging to sample such a posterior PDF. Some methods e.g., Markov chain Monte Carlo (MCMC), are very expensive (e.g., MCMC) while others are cheaper but may generate biased samples. In this paper, we propose an unconstrained Gaussian Mixture Model (GMM) fitting method to approximate the posterior PDF and investigate new strategies to further enhance its performance. To reduce the CPU time of handling bound constraints, we reformulate the GMM fitting formulation such that an unconstrained optimization algorithm can be applied to find the optimal solution of unknown GMM parameters. To obtain a sufficiently accurate GMM approximation with the lowest number of Gaussian components, we generate random initial guesses, remove components with very small or very large mixture weights after each GMM fitting iteration and prevent their reappearance using a dedicated filter. To prevent overfitting, we only add a new Gaussian component if the quality of the GMM approximation on a (large) set of blind-test data sufficiently improves. The unconstrained GMM fitting method with the new strategies proposed in this paper is validated using nonlinear toy problems and then applied to a synthetic history matching example. It can construct a GMM approximation of the posterior PDF that is comparable to the MCMC method, and it is significantly more efficient than the constrained GMM fitting formulation, e.g., reducing the CPU time by a factor of 800 to 7300 for problems we tested, which makes it quite attractive for large scale history matching problems.


2019 ◽  
Author(s):  
Guohua Gao ◽  
Hao Jiang ◽  
Chaohui Chen ◽  
Jeroen C. Vink ◽  
Yaakoub El Khamra ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Guohua Gao ◽  
Jeroen Vink ◽  
Fredrik Saaf ◽  
Terence Wells

Summary When formulating history matching within the Bayesian framework, we may quantify the uncertainty of model parameters and production forecasts using conditional realizations sampled from the posterior probability density function (PDF). It is quite challenging to sample such a posterior PDF. Some methods [e.g., Markov chain Monte Carlo (MCMC)] are very expensive, whereas other methods are cheaper but may generate biased samples. In this paper, we propose an unconstrained Gaussian mixture model (GMM) fitting method to approximate the posterior PDF and investigate new strategies to further enhance its performance. To reduce the central processing unit (CPU) time of handling bound constraints, we reformulate the GMM fitting formulation such that an unconstrained optimization algorithm can be applied to find the optimal solution of unknown GMM parameters. To obtain a sufficiently accurate GMM approximation with the lowest number of Gaussian components, we generate random initial guesses, remove components with very small or very large mixture weights after each GMM fitting iteration, and prevent their reappearance using a dedicated filter. To prevent overfitting, we add a new Gaussian component only if the quality of the GMM approximation on a (large) set of blind-test data sufficiently improves. The unconstrained GMM fitting method with the new strategies proposed in this paper is validated using nonlinear toy problems and then applied to a synthetic history-matching example. It can construct a GMM approximation of the posterior PDF that is comparable to the MCMC method, and it is significantly more efficient than the constrained GMM fitting formulation (e.g., reducing the CPU time by a factor of 800 to 7,300 for problems we tested), which makes it quite attractive for large-scalehistory-matchingproblems. NOTE: This paper is published as part of the 2021 SPE Reservoir Simulation Special Issue.


2022 ◽  
Author(s):  
Xiaodong Zhang ◽  
Anand Natarajan

Abstract. Uncertainty quantification is a necessary step in wind turbine design due to the random nature of the environmental loads, through which the uncertainty of structural loads and responses under specific situations can be quantified. Specifically, wind turbulence has a significant impact on the extreme and fatigue design envelope of the wind turbine. The wind parameters (mean and standard deviation of 10-minute wind speed) are usually not independent, and it will lead to biased results for structural reliability or uncertainty quantification assuming the wind parameters are independent. A proper probabilistic model should be established to model the correlation among wind parameters. Compared to univariate distributions, theoretical multivariate distributions are limited and not flexible enough to model the wind parameters from different sites or direction sectors. Copula-based models are used often for correlation description, but existing parametric copulas may not model the correlation among wind parameters well due to limitations of the copula structures. The Gaussian mixture model is widely applied for density estimation and clustering in many domains, but limited studies were conducted in wind energy and few used it for density estimation of wind parameters. In this paper, the Gaussian mixture model is used to model the joint distribution of mean and standard deviation of 10-minute wind speed, which is calculated from 15 years of wind measurement time series data. As a comparison, the Nataf transformation (Gaussian copula) and Gumbel copula are compared with the Gaussian mixture model in terms of the estimated marginal distributions and conditional distributions. The Gaussian mixture model is then adopted to estimate the extreme wind turbulence, which could be taken as an input to design loads used in the ultimate design limit state of turbine structures. The wind turbulence associated with a 50-year return period computed from the Gaussian mixture model is compared with what is utilized in the design of wind turbines as given in the IEC 61400-1.


Sign in / Sign up

Export Citation Format

Share Document