Data Fusion of ERT and Infiltration Tests, Using Bayesian Maximum Entropy to Mapping Saturated Hydraulic Conductivity

Author(s):  
S. Rabouli ◽  
M. Serre ◽  
V. Dubois ◽  
J. Gance ◽  
H. Henine ◽  
...  
2021 ◽  
Author(s):  
Sara Rabouli ◽  
Vivien Dubois ◽  
Marc Serre ◽  
Julien Gance ◽  
Hocine Henine ◽  
...  

<p>The soil is considered as a biological reactor or an outlet for treated domestic wastewater, respectively to reduce pollutant concentrations in the flows or because the surface hydraulic medium is too remote. In these cases, the saturated hydraulic conductivity of the soil is a key is a quantitative measure to assess whether the necessary infiltration capacity is available. To our knowledge, there is no satisfactory technique for evaluating the saturated hydraulic conductivity Ks of a heterogeneous soil (and its variability) at the scale of a parcel of soil. The aim of this study is to introduce a methodology that associates geophysical measurements and geotechnical in order to better described the near-surface saturated hydraulic conductivity Ks. Here we demonstrate here the interest of using a geostatistical approach, the BME "Bayesian Maximum Entropy", to obtain a 2D spatialization of Ks in heterogeneous soils. This tool opens up prospects for optimizing the sizing infiltration structures that receive treated wastewater. In our case, we have Electrical Resistivity Tomography (ERT) data (dense but with high uncertainty) and infiltration test data (reliable but sparse). The BME approach provides a flexible methodological framework to process these data. The advantage of BME is that it reduces to kriging as its linear limiting cases when only Gaussian data is used, but can also integrate data of other types as might be considered in future works. Here we use hard and Gaussian soft data to rigorously integrate the different data at hand (ERT, and Ks measurement) and their associated uncertainties. Based on statistical analysis, we compared the estimation performances of 3 methods: kriging interpolation of infiltration test data, the transformation of ERT data, and BME data fusion of geotechnical and geophysical data. We evaluated the 3 methods of estimation on simulated datasets and we then do a validation analysis using real field data. We find that BME data fusion of geotechnical and geophysical data provides better estimates of hydraulic conductivity than using geotechnical or geophysical data alone.</p>


2015 ◽  
Vol 47 (2) ◽  
pp. 291-304 ◽  
Author(s):  
Kim H. Paus ◽  
Tone M. Muthanna ◽  
Bent C. Braskerud

Three bioretention cells in Norway were monitored for 23 to 36 months to evaluate the hydrological performance of bioretention cells operated in regions with cold climates and to test if cell size equations can be used to predict hydrological performance. Values of saturated hydraulic conductivity (Ksat) were determined for separate events by analyzing the observed infiltration rates and via infiltration tests. The two cells with the highest Ksat values (15.9 and 45.0 cm/h) performed excellently during the study period infiltrating nearly all of the incoming runoff. In contrast, the cell with low Ksat value (1.3 cm/h) infiltrated barely half of the incoming runoff. The latter cell had a clear seasonal variation in hydrological performance relating to changes in the Ksat values over the year. The size equation that gave the best predictions of the observed hydrological performance accounts for both surface storage and infiltration. By using this equation to evaluate various bioretention cell designs, it was found that the most effective way to increase the hydrologic performance is to have a Ksat value above 10 cm/h.


Sign in / Sign up

Export Citation Format

Share Document