Deep learning-based groundwater storage estimation from seismic data

Author(s):  
T. Lähivaara ◽  
A. Malehmir ◽  
A. Pasanen ◽  
L. Kärkkäinen ◽  
J.M.J. Huttunen ◽  
...  
2019 ◽  
Vol 67 (8) ◽  
pp. 2115-2126 ◽  
Author(s):  
Timo Lähivaara ◽  
Alireza Malehmir ◽  
Antti Pasanen ◽  
Leo Kärkkäinen ◽  
Janne M.J. Huttunen ◽  
...  

2021 ◽  
Author(s):  
Sergei Petrov ◽  
Tapan Mukerji ◽  
Xin Zhang ◽  
Xinfei Yan
Keyword(s):  

2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


Sign in / Sign up

Export Citation Format

Share Document