scholarly journals Making Reflective Equlibrium Precise: A Formal Model

2021 ◽  
Vol 8 (0) ◽  
Author(s):  
Claus Beisbart ◽  
Gregor Betz ◽  
Georg Brun

Reflective equilibrium (RE) is often regarded as a powerful method in ethics, logic, and even philosophy in general. Despite this popularity, characterizations of the method have been fairly vague and unspecific so far. It thus may be doubted whether RE is more than a jumble of appealing but ultimately sketchy ideas that cannot be spelled out consistently. In this paper, we dispel such doubts by devising a formal model of RE. The model contains as components the agent’s commitments and a theory that tries to systematize the commitments. It yields a precise picture of how the commitments and the theory are adjusted to each other. The model differentiates between equilibrium as a target state and the dynamic equilibration process. First solutions to the model, obtained by computer simulation, show that the method allows for consistent specification and that the model’s implications are plausible in view of expectations on RE. In particular, the mutual adjustment of commitments and theory can improve one’s commitments, as proponents of RE have suggested. We argue that our model is fruitful not only because it points to issues that need to be dealt with for a better understanding of RE, but also because it provides the means to address these issues.

1986 ◽  
Vol 2 (4) ◽  
pp. 487-525 ◽  
Author(s):  
Sharon McCoy Carver ◽  
David Klahr

In this article, we propose a new way to assess children's acquisition of debugging skills in a LOGO environment. The assessment procedure is based on an explicit and precise model (in the form of a computer simulation) of good debugging skills. The model has four stages: 1) evaluating the program's planned and actual outcomes to determine that debugging is necessary, 2) identifying the bug by using descriptions of the discrepancy between the planned and actual outcomes to propose potential bugs, 3) locating the bug by using clues about the structure of the program to narrow the search, and 4) correcting the bug and retesting the program. We describe model-based measurements of the LOGO debugging skills actually acquired by students in a “typical” LOGO graphics course. Nine seven- to nine-year-olds were given twenty-four hours of LOGO training over a three-week period. Students learned the editing and command generation skills prerequisite to debugging but were not able to interpret commands and use clues to identify, locate, and correct bugs. We conclude by discussing objectives for teaching the model's debugging skills directly.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


1978 ◽  
Vol 23 (9) ◽  
pp. 649-650
Author(s):  
ARTHUR M. FARLEY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document