A Transfer Learning Approach and Selective Integration of Multiple Types of Assays for Biological Network Inference

Author(s):  
Tsuyoshi Kato ◽  
Kinya Okada ◽  
Hisashi Kashima ◽  
Masashi Sugiyama

The authors’ algorithm was favorably examined on two kinds of biological networks: a metabolic network and a protein interaction network. A statistical test confirmed that the weight that our algorithm assigned to each assay was meaningful.

Author(s):  
Tsuyoshi Kato ◽  
Kinya Okada ◽  
Hisashi Kashima ◽  
Masashi Sugiyama

Inferring the relationship among proteins is a central issue of computational biology and a diversity of biological assays are utilized to predict the relationship. However, as experiments are usually expensive to perform, automatic data selection is employed to reduce the data collection cost. Although data useful for link prediction are different in each local sub-network, existing methods cannot select different data for different processes. This article presents a new algorithm for inferring biological networks from multiple types of assays. The proposed algorithm is based on transfer learning and can exploit local information effectively. Each assay is automatically weighted through learning and the weights can be adaptively different in each local part. The authors’ algorithm was favorably examined on two kinds of biological networks: a metabolic network and a protein interaction network. A statistical test confirmed that the weight that our algorithm assigned to each assay was meaningful.


The task of predicting target proteins for new drug discovery is typically difficult. Target proteins are biologically most important to control a keen functional process. The recent research of experimental and computational -based approaches has been widely used to predict target proteins using biological networks analysis techniques. Perhaps with available methods and statistical algorithm needs to be modified and should be clearer to tag the main target. Meanwhile identifying wrong protein leads to unwanted molecular interaction and pharmacological activity. In this research work, a novel method to identify essential target proteins using integrative graph coloring algorithm has been proposed. The proposed integrative approach helps to extract essential proteins in protein-protein interaction network (PPI) by analyzing neighborhood of the active target protein. Experimental results reviewed based on protein-protein interaction network for homosapiens showed that AEIAPP based approach shows an improvement in the essential protein identification by assuming the source protein as biologically proven protein. The AEIAPP statistical model has been compared with other state of art approaches on human PPI for various diseases to produce good accurate outcome in faster manner with little memory consumption.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hassan Rakhsh-Khorshid ◽  
Hilda Samimi ◽  
Shukoofeh Torabi ◽  
Sayed Mahmoud Sajjadi-Jazi ◽  
Hamed Samadi ◽  
...  

AbstractAnaplastic thyroid carcinoma (ATC) is the most rare and lethal form of thyroid cancer and requires effective treatment. Efforts have been made to restore sodium-iodide symporter (NIS) expression in ATC cells where it has been downregulated, yet without complete success. Systems biology approaches have been used to simplify complex biological networks. Here, we attempt to find more suitable targets in order to restore NIS expression in ATC cells. We have built a simplified protein interaction network including transcription factors and proteins involved in MAPK, TGFβ/SMAD, PI3K/AKT, and TSHR signaling pathways which regulate NIS expression, alongside proteins interacting with them. The network was analyzed, and proteins were ranked based on several centrality indices. Our results suggest that the protein interaction network of NIS expression regulation is modular, and distance-based and information-flow-based centrality indices may be better predictors of important proteins in such networks. We propose that the high-ranked proteins found in our analysis are expected to be more promising targets in attempts to restore NIS expression in ATC cells.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Konstantinos Pliakos ◽  
Celine Vens

Abstract Background Network inference is crucial for biomedicine and systems biology. Biological entities and their associations are often modeled as interaction networks. Examples include drug protein interaction or gene regulatory networks. Studying and elucidating such networks can lead to the comprehension of complex biological processes. However, usually we have only partial knowledge of those networks and the experimental identification of all the existing associations between biological entities is very time consuming and particularly expensive. Many computational approaches have been proposed over the years for network inference, nonetheless, efficiency and accuracy are still persisting open problems. Here, we propose bi-clustering tree ensembles as a new machine learning method for network inference, extending the traditional tree-ensemble models to the global network setting. The proposed approach addresses the network inference problem as a multi-label classification task. More specifically, the nodes of a network (e.g., drugs or proteins in a drug-protein interaction network) are modelled as samples described by features (e.g., chemical structure similarities or protein sequence similarities). The labels in our setting represent the presence or absence of links connecting the nodes of the interaction network (e.g., drug-protein interactions in a drug-protein interaction network). Results We extended traditional tree-ensemble methods, such as extremely randomized trees (ERT) and random forests (RF) to ensembles of bi-clustering trees, integrating background information from both node sets of a heterogeneous network into the same learning framework. We performed an empirical evaluation, comparing the proposed approach to currently used tree-ensemble based approaches as well as other approaches from the literature. We demonstrated the effectiveness of our approach in different interaction prediction (network inference) settings. For evaluation purposes, we used several benchmark datasets that represent drug-protein and gene regulatory networks. We also applied our proposed method to two versions of a chemical-protein association network extracted from the STITCH database, demonstrating the potential of our model in predicting non-reported interactions. Conclusions Bi-clustering trees outperform existing tree-based strategies as well as machine learning methods based on other algorithms. Since our approach is based on tree-ensembles it inherits the advantages of tree-ensemble learning, such as handling of missing values, scalability and interpretability.


Sign in / Sign up

Export Citation Format

Share Document