erbb receptors
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 35)

H-INDEX

58
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Joanne T. deKay ◽  
Joshua Carver ◽  
Bailey Shevenell ◽  
Angela M. Kosta ◽  
Sergey Tsibulnikov ◽  
...  

Abstract Background We investigated the cell surface expression of ErbB receptors on left ventricular (LV) epicardial endothelial cells and CD105+ cells obtained from cardiac biopsies of patients undergoing coronary artery bypass grafting surgery (CABG). Methods Endothelial cells and CD105+ non-endothelial cells were freshly isolated from LV epicardial biopsies obtained from 15 subjects with diabetes mellitus (DM) and 8 controls. The expression of ErbB recepotrs was examined using multiparametric flow cytometry. Human microvascular endothelial cells (HMEC-1) and LV epicardial CD105+ non-endothelial cells were used to determine the effect of high glucose on ADAM10-dependent cleavage of ErbB receptors. Results We found that diabetes mellitus (DM) and high levels of hemoglobin A1C are associated with reduced expression of ErbB2 on both endothelial cells and CD105+ non-endothelial cells. To determine if the expression of ErbB2 receptors is regulated by glucose levels, we examined the effect of high glucose in HMEC-1 and LV epicardial CD105+ non-endothelial cells, using a novel flow cytometric approach to simultaneously determine the total level, cell surface expression, and phosphorylation of ErbB2. Incubation of cells in the presence of 25 mM D-glucose resulted in decreased cell surface expression of ErbB2. We also found high expression of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) on both endothelial cells and CD105+ non-endothelial cells. Inhibition of ADAM10 prevented the high glucose-dependent decrease in the cell surface expression of ErbB2. Conclusions We suggest that high glucose depresses ErbB receptor signaling in endothelial cells and cardiac progenitor cells via the promotion of ADAM10-dependent cleavage of ErbB2 at the cell surface, thus contributing to vascular dysfunction and adverse remodeling seen in diabetic patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monica Benvenuto ◽  
Sara Ciuffa ◽  
Chiara Focaccetti ◽  
Diego Sbardella ◽  
Sara Fazi ◽  
...  

AbstractHead and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human tongue (SCC-15, CAL-27), pharynx (FaDu), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib inhibited cell proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signaling transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice, protracted mice survival and adjusted tumor microenvironment by increasing tumor-infiltrating immune cells (CD4+ and CD8+ T cells, B lymphocytes, macrophages, and Natural Killer cells) and by decreasing vessels density. In addition, Bortezomib modified the expression of proteasome structural subunits in transplanted SALTO-5 cells. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.


Author(s):  
Ankita Sahu ◽  
Saurabh Verma ◽  
Meena Varma ◽  
Manoj Kumar Yadav

: Human EGFR (Epidermal Growth Factor Receptor) family of tyrosine kinase receptors consists of four members, ErbB1-4. Abnormalities in the ErbB family characterize a variety of human cancers, including breast cancer. Tyrosine kinase is recruited by the activated EGFR cell surface receptor, which transmits signals from the receptor to interact with intracellular signaling pathways and regulates cellular functions and biological processes. Targeting the intracellular signaling pathways has been aided in the drug development that was already in use and more continually being developed. This review article highlights the function of ErbB receptors/ligands, their role in signaling pathways, effective targeted drugs, and a combination of targeted drug strategies in breast cancer treatment that could lead to the novel combination of anticancer drug delivery systems.


2021 ◽  
pp. mbc.E21-01-0007
Author(s):  
Ryo Yoshizawa ◽  
Nobuhisa Umeki ◽  
Akihiro Yamamoto ◽  
Mariko Okada ◽  
Masayuki Murata ◽  
...  

p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently-labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant, but that SHC plays the critical role in the temporal regulation of ERK activation.


2021 ◽  
Author(s):  
Monica Benvenuto ◽  
Sara Ciuffa ◽  
Chiara Focaccetti ◽  
Diego Sbardella ◽  
Sara Fazi ◽  
...  

Abstract Head and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with strong in vitro and in vivo anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human pharynx (FaDu), tongue (SCC-15, CAL-27), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib in vivo effects in BALB-neuT mice transplanted with murine SALTO-5 cells were also examined. Bortezomib inhibited cells proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signal transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Furthermore, intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice and protracted mice survival. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.


2021 ◽  
Vol 118 (18) ◽  
pp. e2019282118
Author(s):  
Andrew Tilston-Lunel ◽  
Sarah Mazzilli ◽  
Nathan M. Kingston ◽  
Aleksander D. Szymaniak ◽  
Julia Hicks-Berthet ◽  
...  

Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth. We show that aberrant polarity and YAP/TAZ-regulated gene expression associates with human bronchial precancer pathology and disease progression. Analyses of YAP/TAZ-regulated genes further identified the ERBB receptor ligand Neuregulin-1 (NRG1) as a key transcriptional target and therapeutic targeting of ERBB receptors as a means of preventing and treating precancerous cell growth. Our observations offer important molecular insight into the etiology of LUSC and provides directions for potential interception strategies of lung cancer.


Author(s):  
Young-Sun Lee ◽  
Gyun Jee Song ◽  
Hee-Sook Jun

Betacellulin (BTC), an epidermal growth factor family, is known to promote β-cell regeneration. Recently, pancreatic α-cells have been highlighted as a source of new β-cells. We investigated the effect of BTC on α-cells. Insulin+glucagon+ double stained bihormonal cell levels and pancreatic and duodenal homeobox-1 expression were increased in mice treated with recombinant adenovirus-expressing BTC (rAd-BTC) and β-cell-ablated islet cells treated with BTC. In the islets of rAd-BTC-treated mice, both BrdU+glucagon+ and BrdU+insulin+ cell levels were significantly increased, with BrdU+glucagon+ cells showing the greater increase. Treatment of αTC1-9 cells with BTC significantly increased proliferation and cyclin D2 expression. BTC induced phosphorylation of ErbB receptors in αTC1-9 cells. The proliferative effect of BTC was mediated by ErbB-3 or ErbB-4 receptor kinase. BTC increased phosphorylation of ERK1/2, AKT, and mTOR and PC1/3 expression and GLP-1 production in α-cells, but BTC-induced proliferation was not changed by the GLP-1 receptor antagonist, exendin-9. We suggest that BTC has a direct role in α-cell proliferation via interaction with ErbB-3 and ErbB-4 receptors, and these increased α-cells might be a source of new β-cells.


Sign in / Sign up

Export Citation Format

Share Document