Multidimensional Analysis of Supply Chain Environmental Performance

2012 ◽  
pp. 860-878
Author(s):  
Antti Sirkka ◽  
Marko Junkkari

Monitoring the environmental performance of a product is recognized to be increasingly important. The most common method of measuring the environmental performance is the international standards of Life Cycle Assessment (LCA). Typically, measuring is based on estimations and average values at product category level. In this chapter, the authors present a framework for measuring environmental impact at the item level. Using Traceability Graph, emissions and resources can be monitored from the data management perspective. The model can be mapped to any precision level of physical tracing. At the most precise level, even a single physical object and its components can be analyzed. This, of course, demands that the related objects and their components are identified and mapped to the database. From the opposite perspective, the authors’ model also supports rough level analysis of products and their histories. In terms of the Traceability Cube, multidimensional analysis can be applied for traceability data.

Author(s):  
Antti Sirkka ◽  
Marko Junkkari

Monitoring the environmental performance of a product is recognized to be increasingly important. The most common method of measuring the environmental performance is the international standards of Life Cycle Assessment (LCA). Typically, measuring is based on estimations and average values at product category level. In this chapter, the authors present a framework for measuring environmental impact at the item level. Using Traceability Graph emissions and resources, it can be monitored from the data management perspective. The model can be mapped to any precision level of physical tracing. At the most precise level, even a single physical object and its components can be analyzed. This, of course, demands that the related objects and their components are identified and mapped to the database. From the opposite perspective, the authors’ model also supports rough level analysis of products and their histories. In terms of the Traceability Cube, multidimensional analysis can be applied for traceability data.


2021 ◽  
pp. 102978
Author(s):  
Yovanna Elena Valencia-Barba ◽  
José Manuel Gómez-Soberón ◽  
María Consolación Gómez-Soberón ◽  
María Neftalí Rojas-Valencia

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 362
Author(s):  
Freja Nygaard Rasmussen ◽  
Camilla Ernst Andersen ◽  
Alexandra Wittchen ◽  
Rasmus Nøddegaard Hansen ◽  
Harpa Birgisdóttir

The use of wood and timber products in the construction of buildings is repeatedly pointed towards as a mean for lowering the environmental footprint. With several countries preparing regulation for life cycle assessment of buildings, practitioners from industry will presumably look to the pool of data on wood products found in environmental product declarations (EPDs). However, the EPDs may vary broadly in terms of reporting and results. This study provides a comprehensive review of 81 third-party verified EN 15804 EPDs of cross laminated timber (CLT), glulam, laminated veneer lumber (LVL) and timber. The 81 EPDs represent 86 different products and 152 different product scenarios. The EPDs mainly represent European production, but also North America and Australia/New Zealand productions are represented. Reported global warming potential (GWP) from the EPDs vary within each of the investigated product categories, due to density of the products and the end-of-life scenarios applied. Median results per kg of product, excluding the biogenic CO2, are found at 0.26, 0.24, and 0.17 kg CO2e for CLT, glulam, and timber, respectively. Results further showed that the correlation between GWP and other impact categories is limited. Analysis of the inherent data uncertainty showed to add up to ±41% to reported impacts when assessed with an uncertainty method from the literature. However, in some of the average EPDs, even larger uncertainties of up to 90% for GWP are reported. Life cycle assessment practitioners can use the median values from this study as generic data in their assessments of buildings. To make the EPDs easier to use for practitioners, a more detailed coordination between EPD programs and their product category rules is recommended, as well as digitalization of EPD data.


2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


Sign in / Sign up

Export Citation Format

Share Document