laminated veneer lumber
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 76)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 46 ◽  
pp. 103809
Author(s):  
Mohammad Farajollah Pour ◽  
Hossein Khanjanzadeh ◽  
Ali Dorieh ◽  
Mohammad Valizadeh Kiamahalleh ◽  
Kazem Doost Hoseini

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 68
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus

This paper presents an investigation of the load-slip behaviour of aluminium-timber composite connections. Toothed plates with bolts are often used for connecting timber structural members with steel structural members. In this paper, toothed plates (C2-50/M10G, C2-50/M12G or C11-50/M12) have been used as reinforcement in aluminium-timber screwed connections for the first time. The push-out test specimens consisted of laminated veneer lumber slabs, aluminium alloy beams, and hexagon head wood screws (10 mm × 80 mm and 12 mm × 80 mm). Of the specimens, 12 additionally had toothed plates as reinforcement, while 8 had no reinforcement. The load carrying-capacity, the mode of failure and the load-slip response of the strengthened and non-strengthened screwed connections were investigated. The use of toothed plate connectors was found to be effective in increasing the strength of aluminium-timber composite connections and ineffective in improving their stiffness. The examined stiffness and strength of the connections can be used in the design and numerical modelling of aluminium-timber composite beams with reinforced screwed connections.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7616
Author(s):  
Georg Baumann ◽  
Reinhard Brandner ◽  
Ulrich Müller ◽  
Alexander Stadlmann ◽  
Florian Feist

In order to use wood for structural and load-bearing purposes in mechanical engineering, basic information on the impact behaviour of the material over a wide temperature range is needed. Diffuse porous hardwoods such as solid birch wood (Betula pendula) and solid beech wood (Fagus sylvatica) are particularly suited for the production of engineered wood products (EWPs) such as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process. In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm3) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five temperature levels, ranging from −30 °C to +90 °C. The pendulum hammer (mass = 15 kg) was equipped with an acceleration sensor in order to obtain the acceleration pulse and deceleration force besides the impact bending energy. In both solid birch wood and solid beech wood, the deceleration forces were highest at temperatures at and below zero. While the average impact bending energy for solid birch wood remained almost constant over the whole considered temperature range, it was far less stable and prone to higher scattering for solid beech wood.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3799
Author(s):  
Pui San Khoo ◽  
Kit Ling Chin ◽  
Chuan Li Lee ◽  
Paik San H’ng ◽  
Mohd Sahfani Hafizuddin

Unproductive young rubber trees (15 years old) with smaller diameters (15 to 18 cm) compared to conventional rubber logs, harvested at the age of 25 years old, were selected for the production of laminated panels. Spindleless rotary veneer peeling was applied to logs from short-rotation rubber forest plantations to produce veneers for structural purposes. This raises questions about the utilization of these small-diameter logs with respect to its effect on the quality of veneer and laminated panels produced. This study examines the effect of the glue spread rates on the physical and mechanical properties of rubberwood laminated veneer lumber (LVL). Analysis of variance shows that the application of a 280 g/m2 glue spread rate significantly improved the density, water absorption and dimensional stability of rubberwood LVL. The mechanical properties of rubberwood LVL produced with a 200 g/m2 glue spread rate met the minimum requirement for the 2.1E-3100F stress class; 91.05 MPa for the modulus of rupture in the flatwise direction and 50.23 MPa for compressive strength parallel to the longitudinal axis. The modulus of elasticity in the flatwise direction of 11,189.55 MPa reached the minimum requirement for the 1.5E-2250F stress class.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8273-8288
Author(s):  
Yujie Huang ◽  
Si Chen ◽  
Assima Dauletbek ◽  
Xiaojun Yang ◽  
Jun Wang ◽  
...  

The feasibility of the dynamic testing was explored for the elastic modulus and shear modulus of full-scale laminated veneer lumber in batches at the production site. In order to do so, dynamic testing and analysis, involving a hammer blow and detection of frequencies, were carried out on the laminated veneer lumber free-plate placed in two ways: suspended and placed on a sponge. The results showed that the mode shape and modal frequency value of the suspended laminated veneer lumber free-plate obtained from the modal test were consistent with those of the specimens placed on the sponge. The elastic modulus and shear modulus values of the laminated veneer lumber free-plate obtained in sponge mode based on the transient excitation method were 3.99% and 3.08% higher than the elastic modulus and shear modulus values of the laminated veneer lumber obtained in suspension mode obtained based on the modal test method. The feasibility and reliability of the elastic modulus and shear modulus values obtained by the laminated veneer lumber free-plate in sponge mode were verified.


2021 ◽  
Author(s):  
Ranjana Yadav ◽  
Jitendra Kumar

Engineered wood products are considered as best building materials due to environmentally friendly. Huge change to the way in which wood has been utilized in primary application of construction in the course of the most recent 25 years are in light of decreased admittance to high strength timber from growth forests, and the turn of events and creation of various new design of manufactured wood products. Engineered wood products are available in different variety of sizes and measurements like laminated veneer lumber, glued laminated timber, finger jointed lumber, oriental strand board etc. It is utilized for rooftop and floor sheathing, solid structure, beams and the hull of boats. This review objectively explores not only the environmental aspects of the use of different engineered wood composites as a building material, but also their economic aspects, to understand their effect on sustainability.


2021 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
Achmad Basuki ◽  
Ali Awaludin ◽  
Bambang Suhendro ◽  
Suprapto Siswosukarto

Laminated Veneer Lumber (LVL) Sengon is classified as one of the engineering products having a significant increase of both physical and mechanical properties compared with Sengon solid wood. Considering its short planting years and sustainable production, Sengon wood is very potential to be used as construction materials of low-rise houses to support the housing needs in Indonesia. Creep behaviour of LVL Sengon material is one of the mechanical properties that needs to be considered. This article evaluated value of creep factor of the open web truss joist (OWTJ) LVL Sengon test and compared this experimental creep factor with the numerical results developed by FE model taking into account the viscoelastic parameters of authors' previous study. The viscoelastic parameters were based on a 217-day creep test of compression and tension parallel to the grain of LVL Sengon at 20 % of stress level that were further modeled using Prony series creep model having n equals to 3. The reduction in the modulus of elasticity over time resulted in creep deflection and creep factor values at 217 days of testing results and FE numerical analysis of the OWTJ LVL Sengon ranging from 1.50–1.54; while the predicted creep factor at 25 years of service life is 1.57 or greater than the creep factor value provided in SNI 7973: 2013 of 1.5.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 362
Author(s):  
Freja Nygaard Rasmussen ◽  
Camilla Ernst Andersen ◽  
Alexandra Wittchen ◽  
Rasmus Nøddegaard Hansen ◽  
Harpa Birgisdóttir

The use of wood and timber products in the construction of buildings is repeatedly pointed towards as a mean for lowering the environmental footprint. With several countries preparing regulation for life cycle assessment of buildings, practitioners from industry will presumably look to the pool of data on wood products found in environmental product declarations (EPDs). However, the EPDs may vary broadly in terms of reporting and results. This study provides a comprehensive review of 81 third-party verified EN 15804 EPDs of cross laminated timber (CLT), glulam, laminated veneer lumber (LVL) and timber. The 81 EPDs represent 86 different products and 152 different product scenarios. The EPDs mainly represent European production, but also North America and Australia/New Zealand productions are represented. Reported global warming potential (GWP) from the EPDs vary within each of the investigated product categories, due to density of the products and the end-of-life scenarios applied. Median results per kg of product, excluding the biogenic CO2, are found at 0.26, 0.24, and 0.17 kg CO2e for CLT, glulam, and timber, respectively. Results further showed that the correlation between GWP and other impact categories is limited. Analysis of the inherent data uncertainty showed to add up to ±41% to reported impacts when assessed with an uncertainty method from the literature. However, in some of the average EPDs, even larger uncertainties of up to 90% for GWP are reported. Life cycle assessment practitioners can use the median values from this study as generic data in their assessments of buildings. To make the EPDs easier to use for practitioners, a more detailed coordination between EPD programs and their product category rules is recommended, as well as digitalization of EPD data.


Sign in / Sign up

Export Citation Format

Share Document