wood products
Recently Published Documents


TOTAL DOCUMENTS

1561
(FIVE YEARS 474)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Vol 136 ◽  
pp. 102670
Author(s):  
Teresa Panico ◽  
Francesco Caracciolo ◽  
Marilena Furno

2022 ◽  
Vol 14 (2) ◽  
pp. 758
Author(s):  
Rachel Pasternack ◽  
Mark Wishnie ◽  
Caitlin Clarke ◽  
Yangyang Wang ◽  
Ethan Belair ◽  
...  

As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Mansoor Maitah ◽  
Daniel Toth ◽  
Karel Malec ◽  
Seth Nana Kwame Appiah-Kubi ◽  
Kamil Maitah ◽  
...  

Currently, due to the calamity of unplanned harvesting, the amount of biomass from wood products has increased. Forests occupy 33.7% of the total area of the Czech Republic; therefore, wood and non-wood forest products are important renewables for the country. Wood biomass consists mainly of branches and bark that are not used in the wood or furniture industry. However, it can be used in bioenergy, including wood processing for fuel. As spruce production in the Czech Republic increased from the planned 15.5 million to almost 36.8 million trees in 2020, the price of wood biomass can be expected to be affected. This study aims to develop a predictive model for estimating the decline in the price of wood biomass for wood processors, such as firewood or sawdust producers, as well as for the paper industry. Wood biomass prices are falling with each additional million m3 of spruce wood harvested, as is the decline in wood pulp, which is intended for the paper and packaging industries. The proposed predictive model based on linear regressions should determine how the price of wood biomass will decrease with each additional million harvested spruce trees in the Czech Republic. This tool will be used for practical use in the forestry and wood industry. The linear regression model is suitable for practical forestry use due to its simplicity and high informative value. The aim of the research is to model the dependence of the prices of firewood in the form of wood briquettes and pellets for domestic and industrial processing, as well as the prices of wood pulp on the volume of unplanned logging. It is a guide for the practice of how to use excess spruce wood from unplanned mining in the field of alternative processing with a sustainable aspect for households or heat production for households. The intention is to carry out modelling in such a way that it does not include prices of higher quality wood assortments, which are intended for the woodworking industry.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Vicente Hernandez ◽  
Romina Romero ◽  
Sebastián Arias ◽  
David Contreras

In this study, a novel method for calcium carbonate deposition in wood that increases carbon dioxide concentration and fire resistance is proposed. The method promoted the mineralization of radiata pine wood microstructure with calcium carbonate by using a process consisting in the vacuum impregnation of wood with a calcium chloride aqueous solution and the subsequent sequential diffusion of gaseous ammonium and carbon dioxide. In the most favorable conditions, the method yielded a weight gain of about 20 wt.% due to mineralization, which implied the accumulation of 0.467 mmol·g−1 of carbon dioxide in the microstructure of wood. In addition, a weight gain of about 8% was sufficient to provide fire resistance to a level similar to that achieved by a commercially available fire-retardant treatment. The feasibility of retaining carbon dioxide directly inside the wood microstructure can be advantageous for developing wood products with enhanced environmental characteristics. This method can be a potential alternative for users seeking materials that could be effective at supporting a full sustainable development.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Joshua P. Weyrens ◽  
Obste Therasme ◽  
René H. Germain

Forests are used to mitigate anthropogenic greenhouse gas (GHG) emissions through carbon offset programs, and forest management is generally accepted as “carbon neutral”. However, forest harvesting operations depend heavily on fossil fuels, so it would be remiss to broadly paint all forms of management as carbon neutral without empirical verification of this claim. Biomass feedstock, as a means to supplant fossil fuel consumption, has received the bulk of investigative efforts, as the carbon benefit of biomass is one of the most contentious among wood products, because it does not create long-term carbon storage. A life cycle assessment (LCA) was conducted on a winter shelterwood harvest occurring in the Adirondacks of upstate New York. Primary data were collected daily throughout the operation and used to model the impact attributed to producing clean chips and logs for delivery to a pulp mill and sawmill, respectively. This harvest produced 4894 Mg of clean chips and 527 Mg of sawtimber. We calculated that 39.77 and 25.16 kg of carbon dioxide equivalent were emitted per Mg of clean chips and sawtimber, respectively, with a total observed flow of GHG into the atmosphere between 206 and 210 thousand kilograms. The results contribute to our understanding of the global warming potential of implementing a forest harvest to produce raw materials for medium- and long-term carbon storage products such as paper and dimensional hardwood lumber.


2022 ◽  
Author(s):  
Hüseyin Emre Ilgın ◽  
Markku Karjalainen ◽  
Olli-Paavo Koponen

Adhesives and metal fasteners have an important place in the content of engineered wood products (EWPs). However, adhesives may cause toxic gas emissions due to their petroleum-based nature, while metal fasteners may adversely affect the reusability of these products. These issues also raise important questions about the sustainability and environmental friendliness of EWPs. Thus, there is still room for a solution that is solid and completely pure wood, adhesive- and metal-connectors-free dovetail wood board elements (DWBEs). There are many studies on the technological, ecological, and economic aspects of these products in the literature, but no studies have been conducted to assess the technical performance of DWBEs. This chapter focuses on DWBEs by proposing various geometric configurations for horizontal structural members in multistory building construction through architectural modeling programs. In this architectural design phase, which is one of the first but most important stages, the proposed configurations are based on a theoretical approach, considering contemporary construction practices rather than structural analysis or mechanical simulation. Further research, including technical performance tests, will be undertaken after this critical phase. It is believed that this chapter will contribute to the dissemination of DWBEs for innovative architectural and structural applications, especially in multistory wooden structures construction.


FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 001
Author(s):  
Jaqueline Valerius ◽  
João Carlos Garzel Leodoro Da Silva ◽  
Romano Timofiecsyk Júnior ◽  
Pedro José Steiner Neto

Conifer wood moldings are classified as high value-added wood products and are used for several purposes in civil construction. Brazil is the world’s leading exporter of this product and the United States are its main destination market. It is very important to analyze the behavior of such importations and exportations to set strategies to obtain or increase the competitive advantage and improve the commercialization of these products. The objective of this study was to analyze the US importation seasonality of conifer wood moldings from Brazil and Chile, the main competitor of the Brazilian product in the US market. To write this paper, monthly data of the quantity of US importations of Brazilian and Chilean moldings from the period of 2011 to 2017 were collected from the database of the United States Department of Agriculture/Foreign Agricultural Service. The methodology proposed by Hoffman (2006) was employed to calculate the seasonal and seasonality indexes. The results indicated that the US importation of conifer wood moldings, both from Brazil and Chile, have a seasonal behavior, with great variation of the seasonal index. 


2022 ◽  
pp. 132-145
Author(s):  
Máté Szabó

The purpose of the study. In the rapidly industrializing Hungary, the wood industry became an important economic branch in the country by the beginning of the 20th century, which also played a significant role in the country’s foreign trade. This industry was extremely important in the area I studied, as the forest cover along the Dráva was above the national average, and the quality of the forest stock also had an international reputation. In the last third of the 19th century, domestic and foreign demand for wood products increased, which was accompanied by an increase in the purchase prices of wood raw materials. Applied methods. I involved sources from monographies, employment and census records, and my own data from researches of archives. In my study I present the larger wood companies in the region, the results of the plants, the operation and extent of the industry, and their market relations. I also made a structural analysis examining the entrepreneur and its business together. Outcomes. During this period, the logistical and transportation possibilities of the region improved, as the railway lines – built almost completely until the war – networked the region. In addition to transport on the river, crossing opportunities also increased, so the raw material could reach a processing unit more and more quickly. In the age of dualism, a strong stratum of forest owners and entrepreneurs in the wood industry developed. Major wood industry enterprises were established mainly in the larger estates (Bellye, Dárda, Barcs, Berzence) or through citizenship in the territory of certain large municipalities. Outstanding among these was the Beliscian plant beyond the Dráva, which in two decades had become the largest timber company in Central Europe, employing thousands of people.


2022 ◽  
Vol 354 ◽  
pp. 00006
Author(s):  
Marius Kovacs ◽  
Lorand Toth ◽  
Sorin Simion

Most of combustible dusts present both fire and explosion hazard. Explosion may occur at certain concentrations of dust mixed with air and in the presence of an ignition source. The threat posed by this real danger was confirmed by the events that took place in economic units such as: feed factories, wood products, textile industry, steel, etc. Among the parameters of explosiveness of combustible dust, which can cause an explosion, we mention: maximum explosion pressure, lower explosion limit, explosive index, minimum ignition energy, electrical resistivity of dust, minimum ignition temperature of dust layer and cloud, particle size and concentration of dust in suspension. The current paper presents the results of determinations of combustible wood dust concentrations, performed at an important economic unit, manufacturing veneer and wood panels, at a dusting ventilation installation composed of fan, cyclone and textile filter. These determinations were made in the pipe connecting the fan and the bag filter, to assess possible danger of explosion in the pipe, by relating the measured concentration to the lower explosion limit (concentration of wood dust).


2022 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Matthew G. Hethcoat ◽  
João M. B. Carreiras ◽  
Robert G. Bryant ◽  
Shaun Quegan ◽  
David P. Edwards

Tropical forests play a key role in the global carbon and hydrological cycles, maintaining biological diversity, slowing climate change, and supporting the global economy and local livelihoods. Yet, rapidly growing populations are driving continued degradation of tropical forests to supply wood products. The United Nations (UN) has developed the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme to mitigate climate impacts and biodiversity losses through improved forest management. Consistent and reliable systems are still needed to monitor tropical forests at large scales, however, degradation has largely been left out of most REDD+ reporting given the lack of effective monitoring and countries mainly focus on deforestation. Recent advances in combining optical data and Synthetic Aperture Radar (SAR) data have shown promise for improved ability to monitor forest losses, but it remains unclear if similar improvements could be made in detecting and mapping forest degradation. We used detailed selective logging records from three lowland tropical forest regions in the Brazilian Amazon to test the effectiveness of combining Landsat 8 and Sentinel-1 for selective logging detection. We built Random Forest models to classify pixel-based differences in logged and unlogged regions to understand if combining optical and SAR improved the detection capabilities over optical data alone. We found that the classification accuracy of models utilizing optical data from Landsat 8 alone were slightly higher than models that combined Sentinel-1 and Landsat 8. In general, detection of selective logging was high with both optical only and optical-SAR combined models, but our results show that the optical data was dominating the predictive performance and adding SAR data introduced noise, lowering the detection of selective logging. While we have shown limited capabilities with C-band SAR, the anticipated opening of the ALOS-PALSAR archives and the anticipated launch of NISAR and BIOMASS in 2023 should stimulate research investigating similar methods to understand if longer wavelength SAR might improve classification of areas affected by selective logging when combined with optical data.


Sign in / Sign up

Export Citation Format

Share Document