Multimodal Biometric Hand-Off for Robust Unobtrusive Continuous Biometric Authentication

2013 ◽  
pp. 389-409
Author(s):  
P. Daphne Tsatsoulis ◽  
Aaron Jaech ◽  
Robert Batie ◽  
Marios Savvides

Conventional access control solutions rely on a single authentication to verify a user’s identity but do nothing to ensure the authenticated user is indeed the same person using the system afterwards. Without continuous monitoring, unauthorized individuals have an opportunity to “hijack” or “tailgate” the original user’s session. Continuous authentication attempts to remedy this security loophole. Biometrics is an attractive solution for continuous authentication as it is unobtrusive yet still highly accurate. This allows the authorized user to continue about his routine but quickly detects and blocks intruders. This chapter outlines the components of a multi-biometric based continuous authentication system. Our application employs a biometric hand-off strategy where in the first authentication step a strong biometric robustly identifies the user and then hands control to a less computationally intensive face recognition and tracking system that continuously monitors the presence of the user. Using multiple biometrics allows the system to benefit from the strengths of each modality. Since face verification accuracy degrades as more time elapses between the training stage and operation time, our proposed hand-off strategy permits continuous robust face verification with relatively simple and computationally efficient classifiers. We provide a detailed evaluation of verification performance using different pattern classification algorithms and show that the final multi-modal biometric hand-off scheme yields high verification performance.

Author(s):  
P. Daphne Tsatsoulis ◽  
Aaron Jaech ◽  
Robert Batie ◽  
Marios Savvides

Conventional access control solutions rely on a single authentication to verify a user’s identity but do nothing to ensure the authenticated user is indeed the same person using the system afterwards. Without continuous monitoring, unauthorized individuals have an opportunity to “hijack” or “tailgate” the original user’s session. Continuous authentication attempts to remedy this security loophole. Biometrics is an attractive solution for continuous authentication as it is unobtrusive yet still highly accurate. This allows the authorized user to continue about his routine but quickly detects and blocks intruders. This chapter outlines the components of a multi-biometric based continuous authentication system. Our application employs a biometric hand-off strategy where in the first authentication step a strong biometric robustly identifies the user and then hands control to a less computationally intensive face recognition and tracking system that continuously monitors the presence of the user. Using multiple biometrics allows the system to benefit from the strengths of each modality. Since face verification accuracy degrades as more time elapses between the training stage and operation time, our proposed hand-off strategy permits continuous robust face verification with relatively simple and computationally efficient classifiers. We provide a detailed evaluation of verification performance using different pattern classification algorithms and show that the final multi-modal biometric hand-off scheme yields high verification performance.


Author(s):  
Chalongrath Pholsiri ◽  
Chetan Kapoor ◽  
Delbert Tesar

Robot Capability Analysis (RCA) is a process in which force/motion capabilities of a manipulator are evaluated. It is very useful in both the design and operational phases of robotics. Traditionally, ellipsoids and polytopes are used to both graphically and numerically represent these capabilities. Ellipsoids are computationally efficient but tend to underestimate while polytopes are accurate but computationally intensive. This article proposes a new approach to RCA called the Vector Expansion (VE) method. The VE method offers accurate estimates of robot capabilities in real time and therefore is very suitable in applications like task-based decision making or online path planning. In addition, this method can provide information about the joint that is limiting a robot capability at a given time, thus giving an insight as to how to improve the performance of the robot. This method is then used to estimate capabilities of 4-DOF planar robots and the results discussed and compared with the conventional ellipsoid method. The proposed method is also successfully applied to the 7-DOF Mitsubishi PA10-7C robot.


2013 ◽  
pp. 268-293
Author(s):  
Harini Jagadeesan ◽  
Michael S. Hsiao

In the Internet age, identity theft is a major security issue because contemporary authentication systems lack adequate mechanisms to detect and prevent masquerading. This chapter discusses the current authentication systems and identifies their limitations in combating masquerading attacks. Analysis of existing authentication systems reveals the factors to be considered and the steps necessary in building a good continuous authentication system. As an example, we present a continual, non-intrusive, fast and easily deployable user re-authentication system based on behavioral biometrics. It employs a novel heuristic based on keyboard and mouse attributes to decipher the behavioral pattern of each individual user on the system. In the re-authentication process, the current behavior of user is compared with stored “expected” behavior. If user behavior deviates from expected behavior beyond an allowed threshold, system logs the user out of the current session, thereby preventing imposters from misusing the system. Experimental results show that the proposed methodology improves the accuracy of application-based and application independent systems to 96.4% and 82.2% respectively. At the end of this chapter, the reader is expected to understand the dimensions involved in creating a computer based continuous authentication system and is able to frame a robust continual re-authentication system with a high degree of accuracy.


Author(s):  
Enrico Schiavone ◽  
Andrea Ceccarelli ◽  
Ariadne Carvalho ◽  
Andrea Bondavalli

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 478 ◽  
Author(s):  
Alexander Kozlov ◽  
Andrew V. Martin ◽  
Harry M. Quiney

X-ray free-electron laser pulses initiate a complex series of changes to the electronic and nuclear structure of matter on femtosecond timescales. These damage processes include widespread ionization, the formation of a quasi-plasma state and the ultimate explosion of the sample due to Coulomb forces. The accurate simulation of these dynamical effects is critical in designing feasible XFEL experiments and interpreting the results. Current molecular dynamics simulations are, however, computationally intensive, particularly when they treat unbound electrons as classical point particles. On the other hand, plasma simulations are computationally efficient but do not model atomic motion. Here we present a hybrid approach to XFEL damage simulation that combines molecular dynamics for the nuclear motion and plasma models to describe the evolution of the low-energy electron continuum. The plasma properties of the unbound electron gas are used to define modified inter-ionic potentials for the molecular dynamics, including Debye screening and drag forces. The hybrid approach is significantly faster than damage simulations that treat unbound electrons as classical particles, enabling simulations to be performed on large sample volumes.


Robotica ◽  
1993 ◽  
Vol 11 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Greg R. Luecke ◽  
John F. Gardner

SUMMARYAlmost all industrial robot applications in use today are controlled using a control law that is simple and computationally efficient, local joint error feedback. When two or more open chain manipulators cooperate to manipulate the same object - such as in mechanical grippers, walking machines, and cooperating manipulator systems - closed kinematic chain, redundantly actuated mechanisms are formed. Control approaches for this type of system focus on the more computationally intensive computed torque or inverse plant control laws, due to the concern over instability caused by the unspecified distribution of control forces in the redundant actuator space, and due to the constrained motion caused by the closed kinematic chains.


2015 ◽  
Vol 27 (5) ◽  
pp. 1033-1050 ◽  
Author(s):  
Valérie Ventura ◽  
Sonia Todorova

Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use. But this approach ignores the kinematic information provided by individual neurons recorded on the same electrode. The contribution of this letter is a linear decoding model that extracts kinematic information from individual neurons without spike-sorting the electrode signals. The method relies on modeling sample averages of waveform features as functions of kinematics, which is automatic and requires minimal data storage and computation. In offline reconstruction of arm trajectories of a nonhuman primate performing reaching tasks, the proposed method performs as well as decoders based on expertly manually and automatically sorted spikes.


Author(s):  
Suraj Jain Megharaja ◽  
Javid Bayandor

Abstract Aircraft emergency water landings (ditching) are uncommon but remain an ever-present possibility. Therefore, crashworthiness standards as part of the Federal Aviation Regulations demand such situations to be accounted for during the certification phase. The criteria require aircraft to prove its ability to survive ditching and be able to float after impact for a duration long enough for the passengers to be rescued. In emergency scenarios, it is preferred to choose an open body of water as the landing location as opposed to hard terrain. It would be prohibitively expensive to test impacts of this nature to cover all required certification cases. The data collection can also be a tedious process. Due to these hindrances, performing numerical validation of aircraft water ditching (fluid-solid) interactions has become more important than ever. In case of hard terrain impact, most of the energy is absorbed by the frame of an aircraft. However, in water impacts, the initial load is distributed over the skin. As a result, the ability of an aircraft to withstand crash becomes dependent on the strength of the shear panels to allow an effective transfer of impact energy to damage-absorbing members and mechanisms before failling. Large full-scale simulations to capture the structural response of an aircraft under severe impact loading however can be computationally intensive. This work focusses on comparative analysis of numerical strategies for assessing fluid-structural Interactions. Two of the methods considered are Lagrangian, and Arbitrary Lagrangian and Eulerian (ALE) schemes. For preliminary validations, the experimental studies performed by other research groups have been used to investigate the effect of mesh refinement and computational time on the Lagrangian and ALE schemes. These simulations will provide a basis for selecting the right formulations when developing fluid-solid interactive models for aerospace applications. Based on the results of the studies conducted, the most computationally efficient scheme was then used to perform the simulations of an aircraft fuselage section when impacting water in an emergency landing situation. The fuselage model used in this project was pre-validated against a rigid terrain experimental drop test before it was applied to the ditching studies. Overall, this investigation aims at assessing advanced modeling techniques and approaches that can pave the way for analysis-assited water impact certification and, ultimately, certification by analysis.


Sign in / Sign up

Export Citation Format

Share Document