Breast Cancer Diagnosis Using Optimized Attribute Division in Modular Neural Networks

Author(s):  
Rahul Kala ◽  
Anupam Shukla ◽  
Ritu Tiwari

The complexity of problems has led to a shift toward the use of modular neural networks in place of traditional neural networks. The number of inputs to neural networks must be kept within manageable limits to escape from the curse of dimensionality. Attribute division is a novel concept to reduce the problem dimensionality without losing information. In this paper, the authors use Genetic Algorithms to determine the optimal distribution of the parameters to the various modules of the modular neural network. The attribute set is divided into the various modules. Each module computes the output using its own list of attributes. The individual results are then integrated by an integrator. This framework is used for the diagnosis of breast cancer. Experimental results show that optimal distribution strategy exceeds the well-known methods for the diagnosis of the disease.

2011 ◽  
Vol 4 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Rahul Kala ◽  
Anupam Shukla ◽  
Ritu Tiwari

The complexity of problems has led to a shift toward the use of modular neural networks in place of traditional neural networks. The number of inputs to neural networks must be kept within manageable limits to escape from the curse of dimensionality. Attribute division is a novel concept to reduce the problem dimensionality without losing information. In this paper, the authors use Genetic Algorithms to determine the optimal distribution of the parameters to the various modules of the modular neural network. The attribute set is divided into the various modules. Each module computes the output using its own list of attributes. The individual results are then integrated by an integrator. This framework is used for the diagnosis of breast cancer. Experimental results show that optimal distribution strategy exceeds the well-known methods for the diagnosis of the disease.


2018 ◽  
Vol 180 (26) ◽  
pp. 42-44
Author(s):  
Khaled M. ◽  
Siham A. ◽  
Wadeea A. ◽  
Ibrahim Abdulrab

2016 ◽  
pp. 203-214 ◽  
Author(s):  
Ahmad Al-Khasawneh

Breast cancer is the second leading cause of cancer deaths in women worldwide. Early diagnosis of this illness can increase the chances of long-term survival of cancerous patients. To help in this aid, computerized breast cancer diagnosis systems are being developed. Machine learning algorithms and data mining techniques play a central role in the diagnosis. This paper describes neural network based approaches to breast cancer diagnosis. The aim of this research is to investigate and compare the performance of supervised and unsupervised neural networks in diagnosing breast cancer. A multilayer perceptron has been implemented as a supervised neural network and a self-organizing map as an unsupervised one. Both models were simulated using a variety of parameters and tested using several combinations of those parameters in independent experiments. It was concluded that the multilayer perceptron neural network outperforms Kohonen's self-organizing maps in diagnosing breast cancer even with small data sets.


Sign in / Sign up

Export Citation Format

Share Document