A Stable Matching Algorithm for VM Migration to Improve Energy Consumption and QOS in Cloud Infrastructures

2015 ◽  
pp. 606-623
Author(s):  
Abdelaziz Kella ◽  
Ghalem Belalem

Cloud Computing is one of the fast spreading technologies for providing utility-based IT services to its users. Large-scale virtualized datacenters are established in order to provide these services. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, datacenters hosting Cloud applications consume huge amounts of electrical energy, contributing to high operational cost for the service providers as well as for the service users. Energy consumption can be reduced by live migration of virtual machines (VM) as required and by switching off idle physical machines (PM). Therefore, we propose an approach that finds a stable matching fair to both VMs and PMs, to improve the energy consumption without affecting the quality of service, instead of favoring either side because of a deferred acceptance procedure. The approach presumes two dynamics thresholds, and prepares those virtual machines on the physical machines that the load is over one of the two presumed values to be migrated. Before migrating all those VMs, we use the Coase theorem to determine the number of VMs to migrate for optimal costs. Our approach aims to improve energy consumption of the datacenters, while delivering an expected Quality of Service.

2014 ◽  
Vol 4 (2) ◽  
pp. 15-33
Author(s):  
Abdelaziz Kella ◽  
Ghalem Belalem

Cloud Computing is one of the fast spreading technologies for providing utility-based IT services to its users. Large-scale virtualized datacenters are established in order to provide these services. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, datacenters hosting Cloud applications consume huge amounts of electrical energy, contributing to high operational cost for the service providers as well as for the service users. Energy consumption can be reduced by live migration of virtual machines (VM) as required and by switching off idle physical machines (PM). Therefore, we propose an approach that finds a stable matching fair to both VMs and PMs, to improve the energy consumption without affecting the quality of service, instead of favoring either side because of a deferred acceptance procedure. The approach presumes two dynamics thresholds, and prepares those virtual machines on the physical machines that the load is over one of the two presumed values to be migrated. Before migrating all those VMs, we use the Coase theorem to determine the number of VMs to migrate for optimal costs. Our approach aims to improve energy consumption of the datacenters, while delivering an expected Quality of Service.


Author(s):  
Osvaldo Adilson De Carvalho Junior ◽  
Sarita Mazzini Bruschi ◽  
Regina Helena Carlucci Santana ◽  
Marcos José Santana

The aim of this paper is to propose and evaluate GreenMACC (Green Metascheduler Architecture to Provide QoS in Cloud Computing), an extension of the MACC architecture (Metascheduler Architecture to provide QoS in Cloud Computing) which uses greenIT techniques to provide Quality of Service. The paper provides an evaluation of the performance of the policies in the four stages of scheduling focused on energy consumption and average response time. The results presented confirm the consistency of the proposal as it controls energy consumption and the quality of services requested by different users of a large-scale private cloud.


2019 ◽  
Vol 5 ◽  
pp. e211
Author(s):  
Hadi Khani ◽  
Hamed Khanmirza

Cloud computing technology has been a game changer in recent years. Cloud computing providers promise cost-effective and on-demand resource computing for their users. Cloud computing providers are running the workloads of users as virtual machines (VMs) in a large-scale data center consisting a few thousands physical servers. Cloud data centers face highly dynamic workloads varying over time and many short tasks that demand quick resource management decisions. These data centers are large scale and the behavior of workload is unpredictable. The incoming VM must be assigned onto the proper physical machine (PM) in order to keep a balance between power consumption and quality of service. The scale and agility of cloud computing data centers are unprecedented so the previous approaches are fruitless. We suggest an analytical model for cloud computing data centers when the number of PMs in the data center is large. In particular, we focus on the assignment of VM onto PMs regardless of their current load. For exponential VM arrival with general distribution sojourn time, the mean power consumption is calculated. Then, we show the minimum power consumption under quality of service constraint will be achieved with randomize assignment of incoming VMs onto PMs. Extensive simulation supports the validity of our analytical model.


2014 ◽  
Vol 986-987 ◽  
pp. 1383-1386
Author(s):  
Zhen Xing Yang ◽  
He Guo ◽  
Yu Long Yu ◽  
Yu Xin Wang

Cloud computing is a new emerging paradigm which delivers an infrastructure, platform and software as services in a pay-as-you-go model. However, with the development of cloud computing, the large-scale data centers consume huge amounts of electrical energy resulting in high operational costs and environment problem. Nevertheless, existing energy-saving algorithms based on live migration don’t consider the migration energy consumption, and most of which are designed for homogeneous cloud environment. In this paper, we take the first step to model energy consumption in heterogeneous cloud environment with migration energy consumption. Based on this energy model, we design energy-saving Best fit decreasing (ESBFD) algorithm and energy-saving first fit decreasing (ESFFD) algorithm. We further provide results of several experiments using traces from PlanetLab in CloudSim. The experiments show that the proposed algorithms can effectively reduce the energy consumption of data center in the heterogeneous cloud environment compared to existing algorithms like NEA, DVFS, ST (Single Threshold) and DT (Double Threshold).


Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing aims to migrate IT services to distant data centers in order to reduce the dependency of the services on the limited local resources. Cloud computing provides access to distant computing resources via Web services while the end user is not aware of how the IT infrastructure is managed. Besides the novelties and advantages of cloud computing, deployment of a large number of servers and data centers introduces the challenge of high energy consumption. Additionally, transportation of IT services over the Internet backbone accumulates the energy consumption problem of the backbone infrastructure. In this chapter, the authors cover energy-efficient cloud computing studies in the data center involving various aspects such as: reduction of processing, storage, and data center network-related power consumption. They first provide a brief overview of the existing approaches on cool data centers that can be mainly grouped as studies on virtualization techniques, energy-efficient data center network design schemes, and studies that monitor the data center thermal activity by Wireless Sensor Networks (WSNs). The authors also present solutions that aim to reduce energy consumption in data centers by considering the communications aspects over the backbone of large-scale cloud systems.


Author(s):  
Aleksandra Kostic-Ljubisavljevic ◽  
Branka Mikavica

All vertically integrated participants in content provisioning process are influenced by bandwidth requirements. Provisioning of self-owned resources that satisfy peak bandwidth demand leads to network underutilization and it is cost ineffective. Under-provisioning leads to rejection of customers' requests. Vertically integrated providers need to consider cloud migration in order to minimize costs and improve quality of service and quality of experience of their customers. Cloud providers maintain large-scale data centers to offer storage and computational resources in the form of virtual machines instances. They offer different pricing plans: reservation, on-demand, and spot pricing. For obtaining optimal integration charging strategy, revenue sharing, cost sharing, wholesale price is applied frequently. The vertically integrated content provider's incentives for cloud migration can induce significant complexity in integration contracts, and consequently improvements in costs and requests' rejection rate.


Author(s):  
Aleksandra Kostic-Ljubisavljevic ◽  
Branka Mikavica

All vertically integrated participants in content provisioning process are influenced by bandwidth requirements. Provisioning of self-owned resources that satisfy peak bandwidth demand leads to network underutilization and it is cost ineffective. Under-provisioning leads to rejection of customers' requests. Vertically integrated providers need to consider cloud migration in order to minimize costs and improve Quality of Service and Quality of Experience of their customers. Cloud providers maintain large-scale data centres to offer storage and computational resources in the form of Virtual Machines instances. They offer different pricing plans: reservation, on-demand and spot pricing. For obtaining optimal integration charging strategy, Revenue Sharing, Cost Sharing, Wholesale Price is applied frequently. The vertically integrated content provider's incentives for cloud migration can induce significant complexity in integration contracts, and consequently improvements in costs and requests' rejection rate.


Sign in / Sign up

Export Citation Format

Share Document