Enhancement of Surface Integrity of Titanium Alloy with Copper by Means of Laser Metal Deposition Process

Author(s):  
Mutiu F. Erinosho ◽  
Esther T. Akinlabi ◽  
Sisa Pityana

The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti6Al4V) Grade 5 have been regarded as the most used alloys for the aerospace applications, due to their lightweight properties and marine application due to their excellent corrosion resistance. The improvements in the surface integrity of the alloy have been achieved successively with the addition of Cu through the use of Ytterbium laser system powered at maximum of 2000 Watts. The motivation for this research work can be attributed to the dilapidation of the surface of titanium alloy, when exposed to marine or sea water for a longer period of time. This chapter provides the surface modification of titanium alloy with the addition of percentage range of Cu within its lattices; and the results obtained from the characterizations conducted on the laser deposited Ti6Al4V/Cu alloys have been improved.

2020 ◽  
pp. 245-270
Author(s):  
Mutiu F. Erinosho ◽  
Esther T. Akinlabi ◽  
Sisa Pityana

The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti6Al4V) Grade 5 have been regarded as the most used alloys for the aerospace applications, due to their lightweight properties and marine application due to their excellent corrosion resistance. The improvements in the surface integrity of the alloy have been achieved successively with the addition of Cu through the use of Ytterbium laser system powered at maximum of 2000 Watts. The motivation for this research work can be attributed to the dilapidation of the surface of titanium alloy, when exposed to marine or sea water for a longer period of time. This chapter provides the surface modification of titanium alloy with the addition of percentage range of Cu within its lattices; and the results obtained from the characterizations conducted on the laser deposited Ti6Al4V/Cu alloys have been improved.


Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi ◽  
Mukul Shukla ◽  
Sisa Pityana

Laser Metal Deposition (LMD), an additive manufacturing process (also known as 3-D printing) and a non-traditional fabrication process used for improving the surface integrity of components is presented in this chapter. In LMD, parts are manufactured directly from the 3-D Computer-Aided Design (CAD) model data. Complex parts can be produced in a single step, which is impossible with the traditional manufacturing methods such as casting, cutting, and turning operations. The major steps required in the production of parts using the laser metal deposition process are highlighted. The flexibility offered by the LMD technique makes it an important surface engineering technique. Composite parts or parts whose surfaces are made of composite materials can also be produced in a single step because two or more dissimilar materials can be handled simultaneously in the LMD process to produce parts. This is because the building of parts in LMD is achieved by the LMD machine following the detail described by the CAD model of the part being made. The processing parameters affecting the properties of laser metal deposited parts are described in detail. This chapter establishes the ability of the LMD in the production of complex and one of its kind parts, its ability to improve surface properties, repair high-valued parts, and reduce the buy-to-fly ratio in the production of aerospace parts. It also highlights the use of non-traditional finishing techniques on laser deposited parts to further improve the surface integrity of components. The chapter is concluded by presenting a laser metal deposited Ti6Al4V/TiC composite. The laser metal deposited Ti6Al4V/TiC composite was characterized through the microstructure, microhardness, and wear resistance, and it was found that the resulting deposits were fully dense and of improved surface properties when compared to the parent materials.


2020 ◽  
pp. 220-244
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi ◽  
Mukul Shukla ◽  
Sisa Pityana

Laser Metal Deposition (LMD), an additive manufacturing process (also known as 3-D printing) and a non-traditional fabrication process used for improving the surface integrity of components is presented in this chapter. In LMD, parts are manufactured directly from the 3-D Computer-Aided Design (CAD) model data. Complex parts can be produced in a single step, which is impossible with the traditional manufacturing methods such as casting, cutting, and turning operations. The major steps required in the production of parts using the laser metal deposition process are highlighted. The flexibility offered by the LMD technique makes it an important surface engineering technique. Composite parts or parts whose surfaces are made of composite materials can also be produced in a single step because two or more dissimilar materials can be handled simultaneously in the LMD process to produce parts. This is because the building of parts in LMD is achieved by the LMD machine following the detail described by the CAD model of the part being made. The processing parameters affecting the properties of laser metal deposited parts are described in detail. This chapter establishes the ability of the LMD in the production of complex and one of its kind parts, its ability to improve surface properties, repair high-valued parts, and reduce the buy-to-fly ratio in the production of aerospace parts. It also highlights the use of non-traditional finishing techniques on laser deposited parts to further improve the surface integrity of components. The chapter is concluded by presenting a laser metal deposited Ti6Al4V/TiC composite. The laser metal deposited Ti6Al4V/TiC composite was characterized through the microstructure, microhardness, and wear resistance, and it was found that the resulting deposits were fully dense and of improved surface properties when compared to the parent materials.


Sign in / Sign up

Export Citation Format

Share Document