Scanning Speed Influence on the Microstructure and Micro hardness Properties of Titanium Alloy Produced by Laser Metal Deposition Process

2017 ◽  
Vol 4 (4) ◽  
pp. 5206-5214 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi
2020 ◽  
pp. 245-270
Author(s):  
Mutiu F. Erinosho ◽  
Esther T. Akinlabi ◽  
Sisa Pityana

The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti6Al4V) Grade 5 have been regarded as the most used alloys for the aerospace applications, due to their lightweight properties and marine application due to their excellent corrosion resistance. The improvements in the surface integrity of the alloy have been achieved successively with the addition of Cu through the use of Ytterbium laser system powered at maximum of 2000 Watts. The motivation for this research work can be attributed to the dilapidation of the surface of titanium alloy, when exposed to marine or sea water for a longer period of time. This chapter provides the surface modification of titanium alloy with the addition of percentage range of Cu within its lattices; and the results obtained from the characterizations conducted on the laser deposited Ti6Al4V/Cu alloys have been improved.


Author(s):  
Mutiu F. Erinosho ◽  
Esther T. Akinlabi ◽  
Sisa Pityana

The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti6Al4V) Grade 5 have been regarded as the most used alloys for the aerospace applications, due to their lightweight properties and marine application due to their excellent corrosion resistance. The improvements in the surface integrity of the alloy have been achieved successively with the addition of Cu through the use of Ytterbium laser system powered at maximum of 2000 Watts. The motivation for this research work can be attributed to the dilapidation of the surface of titanium alloy, when exposed to marine or sea water for a longer period of time. This chapter provides the surface modification of titanium alloy with the addition of percentage range of Cu within its lattices; and the results obtained from the characterizations conducted on the laser deposited Ti6Al4V/Cu alloys have been improved.


Author(s):  
Xueyong Chen ◽  
Todd Sparks ◽  
Jianzhong Ruan ◽  
Frank Liou

This paper presents the usage of ultrasonic vibration in laser direct deposition of 316L (stainless steel) powder. Ultrasonic vibration is used to refine the crystalline structure of the deposition. The ultrasonic vibration device vibrates in the laser deposition system along the Z axis while the system is performing metal deposition. A design of experiments approach is applied in studying the effect of vibration on the deposited material. Vibration during deposition led to grain refinement and an increase in micro-hardness. Also, vibration frequency is a significant factor in determining microstructure.


2016 ◽  
Vol 36 (1) ◽  
pp. 132-137
Author(s):  
RM Mahamood ◽  
JO Aweda ◽  
KR Ajao ◽  
S AbdulKareem ◽  
HA Ajimotokan

The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process. The transverse/ scanning speed was varied between 0.005 to 0.095 m/sec according to established result of the preliminary study that produces full dense and pore free deposits. The mass of the deposited powder was obtained by weighing the substrate before the deposition and reweighing after the deposition. The substrate and the deposits were thoroughly cleaned using wire brush and acetone to remove unmelted powder particles from the surface of the substrate and the deposit. The height and width of the deposits were measured with Venier Caliper and the material efficiencies were determined using developed equations. The objective of this research is to determine the influence of the scanning speed on the material efficiency and deposit height in laser metal deposition of titanium alloy- Ti6Al4V. The results of this study showed that, for the set of processing parameter used in this study, the optimum scanning speed was at 0.015 m/sec with the optimum material utilization efficiency of 83.33% and the deposition height of 1.09 mm.  http://dx.doi.org/10.4314/njt.v36i1.17


Sign in / Sign up

Export Citation Format

Share Document