Assessment of Clinical Decision Support Systems for Predicting Coronary Heart Disease

Fuzzy Systems ◽  
2017 ◽  
pp. 184-201 ◽  
Author(s):  
Sidahmed Mokeddem ◽  
Baghdad Atmani

The use of data mining approaches in medicine and medical science has become necessary especially with the evolution of these approaches and their contributions medical decision support. Coronary artery disease (CAD) touches millions of people all over the world including a major portion in Algeria. However, much advancement has been done in medical science, but the early detection of CAD is still a challenge for prevention. Although, the early detection of CAD is a prevention challenge for clinicians. The subject of this paper is to propose new clinical decision support system (CDSS) for evaluating risk of CAD called CADSS. In this paper, the authors describe the characteristics of clinical decision support systems CDSSs for the diagnosis of CAD. The aim of this study is to explain the clinical contribution of CDSSs for medical decision-making and compare data mining techniques used for their implementation. Then, they describe their new fuzzy logic-based approach for detecting CAD at an early stage. Rules were extracted using a data mining technique and validated by experts, and the fuzzy expert system was used to handle the uncertainty present in the medical field. This work presents the main risk factors responsible for CAD and presents the designed CASS. The developed CADSS leads to 94.05% of accuracy, and its effectiveness was compared with different CDSS.

Author(s):  
Sidahmed Mokeddem ◽  
Baghdad Atmani

The use of data mining approaches in medicine and medical science has become necessary especially with the evolution of these approaches and their contributions medical decision support. Coronary artery disease (CAD) touches millions of people all over the world including a major portion in Algeria. However, much advancement has been done in medical science, but the early detection of CAD is still a challenge for prevention. Although, the early detection of CAD is a prevention challenge for clinicians. The subject of this paper is to propose new clinical decision support system (CDSS) for evaluating risk of CAD called CADSS. In this paper, the authors describe the characteristics of clinical decision support systems CDSSs for the diagnosis of CAD. The aim of this study is to explain the clinical contribution of CDSSs for medical decision-making and compare data mining techniques used for their implementation. Then, they describe their new fuzzy logic-based approach for detecting CAD at an early stage. Rules were extracted using a data mining technique and validated by experts, and the fuzzy expert system was used to handle the uncertainty present in the medical field. This work presents the main risk factors responsible for CAD and presents the designed CASS. The developed CADSS leads to 94.05% of accuracy, and its effectiveness was compared with different CDSS.


Author(s):  
David José Murteira Mendes ◽  
Irene Pimenta Rodrigues ◽  
César Fonseca

A question answering system to help clinical practitioners in a cardiovascular healthcare environment to interface clinical decision support systems can be built by using an extended discourse representation structure, CIDERS, and an ontology framework, Ontology for General Clinical Practice. CIDERS is an extension of the well-known DRT (discourse representation theory) structures, intending to go beyond single text representation to embrace the general clinical history of a given patient represented in an ontology. The Ontology for General Clinical Practice improves the currently available state-of-the-art ontologies for medical science and for the cardiovascular specialty. The chapter shows the scientific and philosophical reasons of its present dual structure with a deeply expressive (SHOIN) terminological base (TBox) and a highly computable (EL++) assertions knowledge base (ABox). To be able to use the current reasoning techniques and methodologies, the authors made a thorough inventory of biomedical ontologies currently available in OWL2 format.


Author(s):  
David José Murteira Mendes ◽  
Irene Pimenta Rodrigues ◽  
César Fonseca

A question answering system to help clinical practitioners in a cardiovascular healthcare environment to interface clinical decision support systems can be built by using an extended discourse representation structure, CIDERS, and an ontology framework, Ontology for General Clinical Practice. CIDERS is an extension of the well-known DRT (discourse representation theory) structures, intending to go beyond single text representation to embrace the general clinical history of a given patient represented in an ontology. The Ontology for General Clinical Practice improves the currently available state-of-the-art ontologies for medical science and for the cardiovascular specialty. The chapter shows the scientific and philosophical reasons of its present dual structure with a deeply expressive (SHOIN) terminological base (TBox) and a highly computable (EL++) assertions knowledge base (ABox). To be able to use the current reasoning techniques and methodologies, the authors made a thorough inventory of biomedical ontologies currently available in OWL2 format.


Author(s):  
Reza S. Kazemzadeh ◽  
Kamran Sartipi ◽  
Priya Jayaratna

Due to reliance on human knowledge, the practice of medicine is subject to errors that endanger patients’ health and cause substantial financial loss to healthcare institutions. Computer-based decision support systems assist healthcare personnel to improve quality of clinical practice. Currently, most clinical guideline modeling languages represent decision-making knowledge in terms of basic logical expressions. In this paper, we focus on encoding, sharing, and using results of data mining analyses to influence decision making within Clinical Decision Support Systems. A knowledge management framework is proposed that addresses the issues of data and knowledge interoperability by adopting healthcare and data mining modeling standards. In a further step, data mining results are incorporated into a guideline-based decision support system. A prototype tool has been developed to provide an environment for clinical guideline authoring and execution. Also, three real world case studies have been presented, one of which is used as a running example throughout the paper.


1993 ◽  
Vol 32 (01) ◽  
pp. 9-11 ◽  
Author(s):  
R. A. Miller

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


Author(s):  
Reza S. Kazemzadeh ◽  
Kamran Sartipi ◽  
Priya Jayaratna

Due to reliance on human knowledge, the practice of medicine is subject to errors that endanger patients’ health and cause substantial financial loss to healthcare institutions. Computer-based decision support systems assist healthcare personnel to improve quality of clinical practice. Currently, most clinical guideline modeling languages represent decision-making knowledge in terms of basic logical expressions. In this paper, we focus on encoding, sharing, and using results of data mining analyses to influence decision making within Clinical Decision Support Systems. A knowledge management framework is proposed that addresses the issues of data and knowledge interoperability by adopting healthcare and data mining modeling standards. In a further step, data mining results are incorporated into a guideline-based decision support system. A prototype tool has been developed to provide an environment for clinical guideline authoring and execution. Also, three real world case studies have been presented, one of which is used as a running example throughout the paper.


Sign in / Sign up

Export Citation Format

Share Document