scholarly journals Computerized Clinical Decision Support Systems for Early Detection of Sepsis Among Adult Inpatients: a Scoping Review (Preprint)

Author(s):  
Khalia Ackermann ◽  
Jannah Baker ◽  
Malcolm Green ◽  
Mary Fullick ◽  
Hilal Varinli ◽  
...  
2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jannik Schaaf ◽  
Martin Sedlmayr ◽  
Johanna Schaefer ◽  
Holger Storf

Abstract Background Rare Diseases (RDs), which are defined as diseases affecting no more than 5 out of 10,000 people, are often severe, chronic and life-threatening. A main problem is the delay in diagnosing RDs. Clinical decision support systems (CDSSs) for RDs are software systems to support clinicians in the diagnosis of patients with RDs. Due to their clinical importance, we conducted a scoping review to determine which CDSSs are available to support the diagnosis of RDs patients, whether the CDSSs are available to be used by clinicians and which functionalities and data are used to provide decision support. Methods We searched PubMed for CDSSs in RDs published between December 16, 2008 and December 16, 2018. Only English articles, original peer reviewed journals and conference papers describing a clinical prototype or a routine use of CDSSs were included. For data charting, we used the data items “Objective and background of the publication/project”, “System or project name”, “Functionality”, “Type of clinical data”, “Rare Diseases covered”, “Development status”, “System availability”, “Data entry and integration”, “Last software update” and “Clinical usage”. Results The search identified 636 articles. After title and abstracting screening, as well as assessing the eligibility criteria for full-text screening, 22 articles describing 19 different CDSSs were identified. Three types of CDSSs were classified: “Analysis or comparison of genetic and phenotypic data,” “machine learning” and “information retrieval”. Twelve of nineteen CDSSs use phenotypic and genetic data, followed by clinical data, literature databases and patient questionnaires. Fourteen of nineteen CDSSs are fully developed systems and therefore publicly available. Data can be entered or uploaded manually in six CDSSs, whereas for four CDSSs no information for data integration was available. Only seven CDSSs allow further ways of data integration. thirteen CDSS do not provide information about clinical usage. Conclusions Different CDSS for various purposes are available, yet clinicians have to determine which is best for their patient. To allow a more precise usage, future research has to focus on CDSSs RDs data integration, clinical usage and updating clinical knowledge. It remains interesting which of the CDSSs will be used and maintained in the future.


Fuzzy Systems ◽  
2017 ◽  
pp. 184-201 ◽  
Author(s):  
Sidahmed Mokeddem ◽  
Baghdad Atmani

The use of data mining approaches in medicine and medical science has become necessary especially with the evolution of these approaches and their contributions medical decision support. Coronary artery disease (CAD) touches millions of people all over the world including a major portion in Algeria. However, much advancement has been done in medical science, but the early detection of CAD is still a challenge for prevention. Although, the early detection of CAD is a prevention challenge for clinicians. The subject of this paper is to propose new clinical decision support system (CDSS) for evaluating risk of CAD called CADSS. In this paper, the authors describe the characteristics of clinical decision support systems CDSSs for the diagnosis of CAD. The aim of this study is to explain the clinical contribution of CDSSs for medical decision-making and compare data mining techniques used for their implementation. Then, they describe their new fuzzy logic-based approach for detecting CAD at an early stage. Rules were extracted using a data mining technique and validated by experts, and the fuzzy expert system was used to handle the uncertainty present in the medical field. This work presents the main risk factors responsible for CAD and presents the designed CASS. The developed CADSS leads to 94.05% of accuracy, and its effectiveness was compared with different CDSS.


Author(s):  
Sidahmed Mokeddem ◽  
Baghdad Atmani

The use of data mining approaches in medicine and medical science has become necessary especially with the evolution of these approaches and their contributions medical decision support. Coronary artery disease (CAD) touches millions of people all over the world including a major portion in Algeria. However, much advancement has been done in medical science, but the early detection of CAD is still a challenge for prevention. Although, the early detection of CAD is a prevention challenge for clinicians. The subject of this paper is to propose new clinical decision support system (CDSS) for evaluating risk of CAD called CADSS. In this paper, the authors describe the characteristics of clinical decision support systems CDSSs for the diagnosis of CAD. The aim of this study is to explain the clinical contribution of CDSSs for medical decision-making and compare data mining techniques used for their implementation. Then, they describe their new fuzzy logic-based approach for detecting CAD at an early stage. Rules were extracted using a data mining technique and validated by experts, and the fuzzy expert system was used to handle the uncertainty present in the medical field. This work presents the main risk factors responsible for CAD and presents the designed CASS. The developed CADSS leads to 94.05% of accuracy, and its effectiveness was compared with different CDSS.


Author(s):  
Taku Harada ◽  
Taiju Miyagami ◽  
Kotaro Kunitomo ◽  
Taro Shimizu

Diagnosis is one of the crucial tasks performed by primary care physicians; however, primary care is at high risk of diagnostic errors due to the characteristics and uncertainties associated with the field. Prevention of diagnostic errors in primary care requires urgent action, and one of the possible methods is the use of health information technology. Its modes such as clinical decision support systems (CDSS) have been demonstrated to improve the quality of care in a variety of medical settings, including hospitals and primary care centers, though its usefulness in the diagnostic domain is still unknown. We conducted a scoping review to confirm the usefulness of the CDSS in the diagnostic domain in primary care and to identify areas that need to be explored. Search terms were chosen to cover the three dimensions of interest: decision support systems, diagnosis, and primary care. A total of 26 studies were included in the review. As a result, we found that the CDSS and reminder tools have significant effects on screening for common chronic diseases; however, the CDSS has not yet been fully validated for the diagnosis of acute and uncommon chronic diseases. Moreover, there were few studies involving non-physicians.


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.


Sign in / Sign up

Export Citation Format

Share Document