Runtime Safety Assurance for Adaptive Cyber-Physical Systems

Author(s):  
Tiago Amorim ◽  
Denise Ratasich ◽  
Georg Macher ◽  
Alejandra Ruiz ◽  
Daniel Schneider ◽  
...  

Cyber-Physical Systems (CPS) provide their functionality by the interaction of various subsystems. CPS usually operate in uncertain environments and are often safety-critical. The constituent systems are developed by different stakeholders, who – in most cases – cannot fully know the composing parts at development time. Furthermore, a CPS may reconfigure itself during runtime, for instance in order to adapt to current needs or to handle failures. The information needed for safety assurance is only available at composition or reconfiguration time. To tackle this assurance issue, the authors propose a set of contracts to describe components' safety attributes. The contracts are used to verify the safety robustness of the parts and build a safety case at runtime. The approach is applied to a use case in the automotive domain to illustrate the concepts. In particular, the authors demonstrate safety assurance at upgrade and reconfiguration on the example of ontology-based runtime reconfiguration (ORR). ORR substitutes a failed service by exploiting the implicit redundancy of a system.

Logistics ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 23
Author(s):  
Cyril Alias ◽  
Frank Alarcón Olalla ◽  
Hauke Iwersen ◽  
Julius Ollesch ◽  
Bernd Noche

In the course of the ongoing era of digitization, cyber-physical systems and complex event processing belong to the most discussed technologies nowadays. The huge challenge that digitization is forming to the transportation and logistics sector is largely accepted by the responsible organizations. Despite initial steps being taken towards digitized value-creation, many professionals wonder about how to realize the ideas and stumble with the precise steps to be taken. With the vision of smart logistics in mind and cost-efficient technologies available, they require a systematic methodology to exploit the potentials accompanying digitization. With the help of an effective and targeted workshop procedure, potentially appropriate application areas with promising benefit potentials can be identified effectively. Such a workshop procedure needs to be a stepwise approach in order to carefully consider all the relevant aspects and to allow for organizational acceptance to grow. In three real-world use case examples from different areas of the transportation and logistics industry, promising applications of cyber-physical systems and complex event processing are identified and pertaining event patterns of critical situations developed in order to make realization easier at a later stage. Each use case example exhibits a frequently occurring problem that can be effectively addressed by using the above-mentioned technology.


Author(s):  
Guru Prasad Bhandari ◽  
Ratneshwer Gupta

Cyber-physical systems (CPSs) are co-engineered integrating with physical and computational components networks. Additionally, a CPS is a mechanism controlled or monitored by computer-based algorithms, tightly interacting with the internet and its users. This chapter presents the definitions relating to dependability, safety-critical and fault-tolerance of CPSs. These definitions are supplemented by other definitions like reliability, availability, safety, maintainability, integrity. Threats to dependability and security like faults, errors, failures are also discussed. Taxonomy of different faults and attacks in CPSs are also presented in this chapter. The main objective of this chapter is to give the general information about secure CPS to the learners for the further enhancement in the field of CPSs.


2020 ◽  
Vol 10 (9) ◽  
pp. 3125
Author(s):  
Saad Mubeen ◽  
Elena Lisova ◽  
Aneta Vulgarakis Feljan

Cyber Physical Systems (CPSs) are systems that are developed by seamlessly integrating computational algorithms and physical components, and they are a result of the technological advancement in the embedded systems and distributed systems domains, as well as the availability of sophisticated networking technology. Many industrial CPSs are subject to timing predictability, security and functional safety requirements, due to which the developers of these systems are required to verify these requirements during the their development. This position paper starts by exploring the state of the art with respect to developing timing predictable and secure embedded systems. Thereafter, the paper extends the discussion to time-critical and secure CPSs and highlights the key issues that are faced when verifying the timing predictability requirements during the development of these systems. In this context, the paper takes the position to advocate paramount importance of security as a prerequisite for timing predictability, as well as both security and timing predictability as prerequisites for functional safety. Moreover, the paper identifies the gaps in the existing frameworks and techniques for the development of time- and safety-critical CPSs and describes our viewpoint on ensuring timing predictability and security in these systems. Finally, the paper emphasises the opportunities that artificial intelligence can provide in the development of these systems.


2019 ◽  
Vol 32 (2) ◽  
Author(s):  
Atif Mashkoor ◽  
Johannes Sametinger ◽  
Miklós Biro ◽  
Alexander Egyed

2017 ◽  
Vol 25 (0) ◽  
pp. 797-810 ◽  
Author(s):  
Tasuku Ishigooka ◽  
Habib Saissi ◽  
Thorsten Piper ◽  
Stefan Winter ◽  
Neeraj Suri

Sign in / Sign up

Export Citation Format

Share Document