Effect of High-Volume Oil Palm Biomass Waste in Mortar

This chapter discusses the utilization of wastes in the form of palm oil fuel ash, oil palm kernel shell, and oil palm fibre in the production of mortar mixes as a part of new and innovative materials in construction industry. Detailed introduction is provided followed by a clear description of each waste and its effect when added to mortar mixes. Furthermore, a research study on the effect of palm oil fuel ash, palm oil kernel shell, palm oil fibre on mortar properties was carried out and the experimental program details are given under four subtitles. Splitting tensile strength and flexural strength were performed to test the engineering properties of mortar containing different types of waste. Results and discussion are provided for additional grasp. It is concluded that the inclusion of high-volume palm oil biomass waste can produce sustainable mortars with high strength and with more durability performance.

2015 ◽  
Vol 1113 ◽  
pp. 578-585 ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd Sam ◽  
Muhammad Aamer Rafique Bhutta ◽  
Nur Farhayu Ariffin ◽  
...  

The utilization of waste materials which are abundant and cheap, especially from clean resources, has become more pressing than ever. This paper, discusses the utilization of the wastes in the form of palm oil fuel ash and oil palm kernel shell in the production of mortar mixes as a part of new and innovative materials in construction industry. The studies include the basic properties including the morphology of the composite with regards to variations in the mix design process. In order to get a better performance in terms of strength development, the ash used has gone through heat treatment and ground up to the size less than 2µm. High volume of 60%, 80% and 100% palm oil fuel ash was used as cement replacement. The incorporation of more than 80% of palm oil biomass waste as cement and sand replacement has produced mortar having an improved compressive strength than normal mortar. In addition, the density of the mortar with biomass waste was less than normal mortar. Overall results have revealed that the inclusion of high volume palm oil biomass waste can produce mortar mix with high strength, good performance and most importantly more sustainable.


2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Habeeb Lateef Muttashar ◽  
M. W. Hussin ◽  
Jahanger Mirza ◽  
Ghasan Fahim Huseien

This paper represents the effects of using waste generated from palm oil industries like ash, shell and fibre on the engineering properties of mortar. Palm Oil Fuel Ash (POFA) was used as cement replacement up to 60% and Oil Palm Kernel Shell (OPKS) as sand replacement in mortar mixture. The Oil Palm Fibre was added to increase the strengthening performance of mortar. The method used to find the water binder ratio was by trial and error method with 1:3 ratio of cement to sand. The cubes size of 70mm x 70mm x 70mm, beams size of 40mm x 40mm x 160mm, and cylinders size of 70mm diameter and 150mm height, were cast and tested for compressive strength, flexural strength and splitting tensile strengths of mortar. Samples were cured in water before testing it at 7, 28, and 60 days. Also, the water absorption of mortar was tested at the age of 28 days. The results showed that oil palm fibre provided more advantages and increase the strength properties especially in the flexural and tensile strength. The addition of Oil Palm Kernel Shell reduced the density of mortar and it can be used for lightweight application.  The test results also showed that as the POFA ratio increased, the compressive strength of mortar decreased. However, as OPKS ratio increased, the density was found to be decreased. The mix proportions using 60% POFA and 20% OPKS was considered as the optimum mix design. The mortar showed optimum strength at 9% with the addition of fibre.


2018 ◽  
Vol 12 (1) ◽  
pp. 35-46 ◽  
Author(s):  
A.M. Zeyad ◽  
Bassam A. Tayeh ◽  
Abdalla M. Saba ◽  
M.A. Megat Johari

Introduction: Palm oil fuel ash in two various forms-ground (GPOFA) by heat-treated carbon-free ultrafine of a median particle size of 2 μm (UPOFA) were utilized to produce high strength concretes (HSC-GPOFA (HSCgx), HSC-UPOFA (HSCux), and HSC-OPC) at different levels ordinary Portland cement (OPC) partial replacements (x) of 20, 40 and 60%. Methods: The workability (slump, slump loss, and compacting factor), initial and final setting times and strength in both forms of concrete were investigated. Results and Conclusion: The results showed that HSCu had improved physical properties and chemical compositions, extended setting times, enhanced workability, better strength, and enhanced workability retention compared to HSCg and HSC-OPC. Further, POFA carbon content negatively influenced the workability and setting time, while its specific gravity had a positive influence due to the enhancement of paste volume and particles lubrication effects. However, carbon content and surface areas of POFA did not significantly influence the compressive strength of HSC at the level of partial OPC substitution not exceeding 40%.


2015 ◽  
Vol 802 ◽  
pp. 214-219 ◽  
Author(s):  
Aktham Hatem Alani ◽  
Megat Azmi Megat Johari

The influence of silica fume (SF) inclusion on the compressive strength development of high strength concrete (HSC) containing high volume of palm oil fuel ash (POFA) has been investigated. A HSC containing 100% ordinary Portland cement (OPC) and another HSC mix with 50% POFA as part of the binder were prepared. Due to the reduction in early strength of the HSC with the inclusion of high volume of POFA in the binary blended binder HSC, attempt was made to partially replace the OPC with SF at 5, 10, 15 and 20%, thus creating a ternary blended binder HSC. The results show that the compressive strength development of the HSC containing high volume of POFA was significantly improved with the inclusion of SF. The ternary blended binder HSC with 15% SF exhibited the highest increase in early age strength, even though it did not surpass the OPC-HSC, and it provided the highest strength at 7 and 28 days in comparison to other HSC mixes. Thus, ternary blended binder containing more than 60% supplementary cementitious material (POFA and SF) could be utilized to produce HSC.


2015 ◽  
Vol 93 ◽  
pp. 29-34 ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohamed A. Ismail ◽  
Han Seung Lee ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document