scholarly journals Peer-to-Peer Networks for Content Sharing

2011 ◽  
pp. 28-65 ◽  
Author(s):  
Choon Hoong Ding ◽  
Sarana Nutanong ◽  
Rajkumar Buyya

Peer-to-peer (P2P) systems are popularly used as “file swapping” networks to support distributed content sharing. A number of P2P networks for file sharing have been developed and deployed. Napster, Gnutella, and Fasttrack are three popular P2P systems. This chapter presents a broad overview of P2P computing and focuses on content sharing networks and technologies. It also emphasizes on the analysis of network topologies used in popular P2P systems. In addition, this chapter also identifies and describes architecture models and compares various characteristics of four P2P systems—Napster, Gnutella, Fasttrack, and OpenFT.

Author(s):  
S. H. Kwok ◽  
Y. M. Cheung ◽  
K. Y. Chan

A recent survey revealed that 18 millions American Internet users, or approximately 14% of total American Internet population have peer-to-peer (P2P) file-sharing applications running on their computers (Rainie & Madden, 2004). Not surprisingly, P2P applications have become common tools for information sharing and distribution since the appearance of Napster (Napster, 2003) in 1999. P2P systems are the distributed systems in which all nodes are equal in terms of functionality and able to directly communicate with each other without the coordination of a powerful server. Anonymity, scalability, fault resilience, decentralization and self-organization are the distinct characteristics of P2P computing (Milojicic et al., 2002) compared with the traditional client-server computing. P2P computing is believed to be capable of overcoming limitations of the computing environment placed by the client-server computing model. Milojicic et al. (2002), for example, suggested that P2P computing is capable of providing improved scalability by eliminating the limiting factor, the centralized server existing in the client-server computing. In the past few years, P2P computing and its promised characteristics have caught the attention of researchers who have studied the existing P2P networks, and the advantages and disadvantage of P2P systems. Important findings include the excessive network traffic caused by flooding-based searching mechanism that must be tackled in order to fully utilize the improved scalability of P2P systems (Matei, Iamnitchi, & Foster, 2002; Portmann & Seneviratne, 2002). There were proposed efficient searching techniques targeted for both structured and unstructured P2P systems. Other research projects were conducted to study, and were intended to complement, the drawbacks brought by distinct characteristics of P2P systems. For example, the P2P users’ free-riding behavior is generally attributed to the anonymity of such form of communication (Adar & Huberman, 2000). Recent research projects have shifted to a new line of investigation of P2P networks from the economic perspective and applications of P2P systems in workplaces (Kwok & Gao, 2004; Tiwana, 2003).


2011 ◽  
Vol 295-297 ◽  
pp. 1945-1950
Author(s):  
Ya Dong Gong ◽  
Yong Xiang Wen ◽  
He Ping Deng ◽  
Zhan Ran Gu

Although the original intent of the peer-to-peer (P2P) concept is to treat each participant equally, the heterogeneity is an inherent characteristic of P2P systems. In this paper, according to the previous researches in P2P resource sharing networks, we first conclude and classify the heterogeneity in P2P networks, and then analyze each type of P2P systems that utilize heterogeneity in P2P network. The above analysis and conclusion will become a good guidance to design new resource locating algorithm which takes advantage of heterogeneity in P2P networks.


Author(s):  
Anupriya Koneru ◽  
MHM Krishna Prasad

P2P communities can be seen as truly Distributed Computing applications in which group members communicate with one another to exchange information. The authors consider security issues in Peer to Peer Networks. For secure exchange of data between the group members the authors present a cryptography protocol and an Identity mechanism which can able to check even the Trust of the Peers based on the available reputation information. The authors are encapsulating the reputations of both the provider and the requester. So the requester cannot (gainfully) maliciously abort the transaction in the middle. In other words, the requester cannot take the service from the provider and then logoff without giving a recommendation to the provider.


Author(s):  
Kaylash Chaudhary ◽  
Xiaoling Dai ◽  
John Grundy

Micro-payment systems are an important part of peer-to-peer (P2P) networks and address the “free-rider” problem in most existing content sharing systems. To address this issue, the authors have developed a new micro-payment system for content sharing in P2P networks called P2P-Netpay. This is an offline, debit based protocol that provides a secure, flexible, usable and reliable credit service. This article compares micro-payment with non-micro-payment credit systems for file sharing applications and finds that this approach liberates the “free-rider” problem. The authors analyse the heuristic evaluation performed by a set of evaluators and present directions for research aiming to improve the overall satisfaction and efficiency of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document