p2p network
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 100)

H-INDEX

19
(FIVE YEARS 4)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1525
Author(s):  
Abdullah Ayub Khan ◽  
Zaffar Ahmed Shaikh ◽  
Asif Ali Laghari ◽  
Sami Bourouis ◽  
Asif Ali Wagan ◽  
...  

In this paper, we propose a secure blockchain-aware framework for distributed data management and monitoring. Indeed, images-based data are captured through drones and transmitted to the fog nodes. The main objective here is to enable process and schedule, to investigate individual captured entity (records) and to analyze changes in the blockchain storage with a secure hash-encrypted (SH-256) consortium peer-to-peer (P2P) network. The proposed blockchain mechanism is also investigated for analyzing the fog-cloud-based stored information, which is referred to as smart contracts. These contracts are designed and deployed to automate the overall distributed monitoring system. They include the registration of UAVs (drones), the day-to-day dynamic captured drone-based images, and the update transactions in the immutable storage for future investigations. The simulation results show the merit of our framework. Indeed, through extensive experiments, the developed system provides good performances regarding monitoring and management tasks.


2021 ◽  
Author(s):  
Mikel Cortes-Goicoechea ◽  
Leonardo Bautista-Gomez
Keyword(s):  

Author(s):  
Savinay Mengi ◽  
Astha Gupta

A Blockchain protocol operates on top of the Internet, on a P2P network of computers that all run the protocol and hold an identical copy of the ledger of transactions, enabling P2P value transactions without a middleman though machine consensus. The concept of Blockchain first came to fame in October 2008, as part of a proposal for Bitcoin, with the aim to create P2P money without banks. Bitcoin introduced a novel solution to the age-old human problem of trust. The underlying blockchain technology allows us to trust the outputs of the system without trusting any actor within it. People and institutions who do not know or trust each other, reside in different countries, are subject to different jurisdictions, and who have no legally binding agreements with each other, can now interact over the Internet without the need for trusted third parties like banks, Internet platforms, or other types of clearing institutions. Ideas around cryptographically secured P2P networks have been discussed in the academic environment in different evolutionary stages, mostly in theoretical papers, since the 1980s. “Proof-of-Work” is the consensus mechanism that enables distributed control over the ledger. It is based on a combination of economic incentives and cryptography. Blockchain is a shared, trusted, public ledger of transactions, that everyone can inspect but which no single user controls. It is a distributed database that maintains a continuously growing list of transaction data records, cryptographically secured from tampering and revision.


2021 ◽  
Vol 3 (5) ◽  
pp. 12-17
Author(s):  
Lin Ye ◽  
Wendie Zhou

As an innovative Internet financial service mode, person to person (P2P) network lending has rapidly promoted the development of Inclusive Finance in China. However, in the development process of P2P network loan, there are also some problems, such as platform role deviation, institutional function alienation, industry credit difficulty and so on, which lead to a large number of phenomena, such as suspension of business, refund, difficulty in cash withdrawal and running away. Faced with this dilemma, the regulatory authorities began to carry out strict supervision on the industry and guide the benign exit and transformation of the industry. In view of this situation, this paper will predict the future development direction of China’s online lending combined with the financial regulatory policies and the future trend of Internet Finance under the new situation.


Author(s):  
Federico Franzoni ◽  
Xavier Salleras ◽  
Vanesa Daza

AbstractOver the past decade, the Bitcoin P2P network protocol has become a reference model for all modern cryptocurrencies. While nodes in this network are known, the connections among them are kept hidden, as it is commonly believed that this helps protect from deanonymization and low-level attacks. However, adversaries can bypass this limitation by inferring connections through side channels. At the same time, the lack of topology information hinders the analysis of the network, which is essential to improve efficiency and security. In this paper, we thoroughly review network-level attacks and empirically show that topology obfuscation is not an effective countermeasure. We then argue that the benefits of an open topology potentially outweigh its risks, and propose a protocol to reliably infer and monitor connections among reachable nodes of the Bitcoin network. We formally analyze our protocol and experimentally evaluate its accuracy in both trusted and untrusted settings. Results show our system has a low impact on the network, and has precision and recall are over 90% with up to 20% of malicious nodes in the network.


Author(s):  
Federico Franzoni ◽  
Vanesa Daza

AbstractThe Bitcoin P2P network currently represents a reference benchmark for modern cryptocurrencies. Its underlying protocol defines how transactions and blocks are distributed through all participating nodes. To protect user privacy, the identity of the node originating a message is kept hidden. However, an adversary observing the whole network can analyze the spread pattern of a transaction to trace it back to its source. This is possible thanks to the so-called rumor centrality, which is caused by the symmetry in the spreading of gossip-like protocols. Recent works try to address this issue by breaking the symmetry of the Diffusion protocol, currently used in Bitcoin, and leveraging proxied broadcast. Nonetheless, the complexity of their design can be a barrier to their adoption in real life. In this work, we propose Clover, a novel transaction relay protocol that protects the source of transaction messages with a simple, yet effective, design. Compared to previous solutions, our protocol does not require building propagation graphs, and reduces the ability of the adversary to gain precision by opening multiple connections towards the same node. Experimental results show that the deanonymization accuracy of an eavesdropper adversary against Clover is up to 10 times smaller compared to Diffusion.


Sign in / Sign up

Export Citation Format

Share Document