Solving Environmental/Economic Dispatch Problem

Author(s):  
M.A. Abido

Multiobjective particle swarm optimization (MOPSO) technique for environmental/economic dispatch (EED) problem is proposed and presented in this work. The proposed MOPSO technique evolves a multiobjective version of PSO by proposing redefinition of global best and local best individuals in multiobjective optimization domain. The proposed MOPSO technique has been implemented to solve the EED problem with competing and non-commensurable cost and emission objectives. Several optimization runs of the proposed approach have been carried out on a standard test system. The results demonstrate the capabilities of the proposed MOPSO technique to generate a set of well-distributed Pareto-optimal solutions in one single run. The comparison with the different reported techniques demonstrates the superiority of the proposed MOPSO in terms of the diversity of the Pareto optimal solutions obtained. In addition, a quality measure to Pareto optimal solutions has been implemented where the results confirm the potential of the proposed MOPSO technique to solve the multiobjective EED problem and produce high quality nondominated solutions.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yongji Jia ◽  
Yuanyuan Xu ◽  
Dong Yang ◽  
Jia Li

The bike-sharing system (BSS), as a sustainable way to deal with the “last mile” problem of mass transit systems, is increasingly popular in recent years. Despite its success, the BSS tends to suffer from the mismatch of bike supply and user demand. BSS operators have to transfer bikes from surplus stations to deficit stations to redistribute them among stations by means of trucks. In this paper, we deal with the bike-sharing rebalancing problem with balance intervals (BRP-BIs), which is a variant of the static bike-sharing rebalancing problem. In this problem, the equilibrium of station is characterized by a balance interval instead of a balance point in the literature. We formulate the BRP-BI as a biobjective mixed-integer programming model with the aim of determining both the minimum cost route for a single capacitated vehicle and the maximum average rebalance utility, an index for the balanced degree of station. Then, a multistart multiobjective particle swarm optimization (MS-MOPSO) algorithm is proposed to solve the model such that the Pareto optimal solutions can be derived. The proposed algorithm is extended with crossover operator and variable neighbourhood search to enhance its exploratory capability. Compared with Hybrid NSGA-II and MOPSO, the computational experimental results demonstrate that our MS-MOPSO can obtain Pareto optimal solutions with higher quality.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaoshu Zhu ◽  
Jie Zhang ◽  
Junhong Feng

In MOPSO (multiobjective particle swarm optimization), to maintain or increase the diversity of the swarm and help an algorithm to jump out of the local optimal solution, PAM (Partitioning Around Medoid) clustering algorithm and uniform design are respectively introduced to maintain the diversity of Pareto optimal solutions and the uniformity of the selected Pareto optimal solutions. In this paper, a novel algorithm, the multiobjective particle swarm optimization based on PAM and uniform design, is proposed. The differences between the proposed algorithm and the others lie in that PAM and uniform design are firstly introduced to MOPSO. The experimental results performing on several test problems illustrate that the proposed algorithm is efficient.


2009 ◽  
Vol 11 (1) ◽  
pp. 79-88 ◽  
Author(s):  
M. Janga Reddy ◽  
D. Nagesh Kumar

Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tao Zhang ◽  
Tiesong Hu ◽  
Yue Zheng ◽  
Xuning Guo

An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm.


Author(s):  
Haider J.Touma

In this work, the Whale Optimization Algorithm method used to solve the Environmental Economic Dispatch Problem. The performance of the used algorithm is substantiated using standard test system of three thermal generating units. The proposed algorithm produced optimum or near optimum solutions. The obtained results in this study using the Whale Optimization Algorithm are compared with the obtained results using other intelligent methods such as Particle Swarm Optimization, Simple Genetic Algorithm and Genetic Algorithm. The comparison demonstrated the obtained results in this research are close to these obtained using the above revealed approaches.


Author(s):  
Yong Xiang ◽  
Huidan Zheng ◽  
Wuwen Cao ◽  
Dong Gong ◽  
Jiazhen Huang

: As the construction industry becomes more sustainable in the future, such as green, ecology, and safety, the higher the requirements for the ultimate objectives of the project.The traditional management objectives of investment, duration, and quality can no longer meet the requirements of comprehensive optimization management. Therefore, from the perspective of the project owners, the work introduced the safety and environmental objectives based on traditional management objectives. The thesis analyzes the relationship between the objectives, and builds the equilibrium optimization model. Moreover, this thesis uses multi-objective particle swarm optimization (MOPSO) to solve the problem, and obtains a series of Pareto optimal solutions. Then, according to the specific requirements of project management and the use of the efficacy coefficient method, the best solution is selected from the Pareto optimal solutions. Finally, a Sichuan wind power project is taken as an example. The work used the MOPSO to run 1,000 trails, and calculate the mean and standard deviation. It verified the rationality of model and the practicability of MOPSO.


Sign in / Sign up

Export Citation Format

Share Document