Human-Computer Interaction in Games Using Computer Vision Techniques

Author(s):  
Vladimir Devyatkov ◽  
Alexander Alfimtsev

A primary goal of virtual environments is to support natural, efficient, powerful and flexible human-computer interaction. But the traditional two-dimensional, keyboard- and mouse-oriented graphical user interface is not well-suited for virtual environments. The most popular approaches for capture, tracking and recognition of different modalities simultaneously to create intellectual human-computer interface for games will be considered in this chapter. Taking into account the large gesture variability and their important role in creating intuitive interfaces, the considered approaches focus one’s attention on gestures although the approaches may be used also for other modalities. The considered approaches are user independent and do not require large learning samples.

2013 ◽  
pp. 1210-1231 ◽  
Author(s):  
Vladimir Devyatkov ◽  
Alexander Alfimtsev

A primary goal of virtual environments is to support natural, efficient, powerful and flexible human-computer interaction. But the traditional two-dimensional, keyboard- and mouse-oriented graphical user interface is not well-suited for virtual environments. The most popular approaches for capture, tracking and recognition of different modalities simultaneously to create intellectual human-computer interface for games will be considered in this chapter. Taking into account the large gesture variability and their important role in creating intuitive interfaces, the considered approaches focus one’s attention on gestures although the approaches may be used also for other modalities. The considered approaches are user independent and do not require large learning samples.


2020 ◽  
Vol 30 (5) ◽  
pp. 949-982 ◽  
Author(s):  
Henrietta Jylhä ◽  
Juho Hamari

Abstract Graphical user interfaces are widely common and present in everyday human–computer interaction, dominantly in computers and smartphones. Today, various actions are performed via graphical user interface elements, e.g., windows, menus and icons. An attractive user interface that adapts to user needs and preferences is progressively important as it often allows personalized information processing that facilitates interaction. However, practitioners and scholars have lacked an instrument for measuring user perception of aesthetics within graphical user interface elements to aid in creating successful graphical assets. Therefore, we studied dimensionality of ratings of different perceived aesthetic qualities in GUI elements as the foundation for the measurement instrument. First, we devised a semantic differential scale of 22 adjective pairs by combining prior scattered measures. We then conducted a vignette experiment with random participant (n = 569) assignment to evaluate 4 icons from a total of pre-selected 68 game app icons across 4 categories (concrete, abstract, character and text) using the semantic scales. This resulted in a total of 2276 individual icon evaluations. Through exploratory factor analyses, the observations converged into 5 dimensions of perceived visual quality: Excellence/Inferiority, Graciousness/Harshness, Idleness/Liveliness, Normalness/Bizarreness and Complexity/Simplicity. We then proceeded to conduct confirmatory factor analyses to test the model fit of the 5-factor model with all 22 adjective pairs as well as with an adjusted version of 15 adjective pairs. Overall, this study developed, validated, and consequently presents a measurement instrument for perceptions of visual qualities of graphical user interfaces and/or singular interface elements (VISQUAL) that can be used in multiple ways in several contexts related to visual human-computer interaction, interfaces and their adaption.


Author(s):  
Francesca Fallucchi ◽  
Fabio Massimo Zanzotto

The authors propose probabilistic models for learning ontologies that expand existing ontologies taking into account both corpus-extracted evidence and the structure of the generated ontologies. The model exploits structural properties of target relations such as transitivity during learning. They then propose two extensions of the probabilistic models: a model for learning from a generic domain that can be exploited to extract new information in a specific domain and an incremental ontology learning system that puts human validations in the learning loop. This latter provides a graphical user interface and a human-computer interaction workflow supporting the incremental leaning loop.


2017 ◽  
Author(s):  
Connor Verheyen ◽  
Cornelis Rowaan ◽  
Bryan Gatto ◽  
Daniel Gizachew

We here developed an automated well plate imaging system to eliminate the requirement for continuous human operation, thus freeing up the valuable time of a scientific researcher and removing the possibility of fatigue-induced human error. Specifically, we created a prototype system with programmed two-dimensional movement, automated calibration, variable plate configuration compatibility, variable path feasibility, reliable well plate image capture, and an intuitive graphical user interface. Successful implementation of our device would immediately benefit laboratory scientists, giving them more time to pursue the next biomedical breakthroughs.


2006 ◽  
Vol 3 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Zeljko Obrenovic ◽  
Dusan Starcevic

In this paper we describe how existing software developing processes, such as Rational Unified Process, can be adapted in order to allow disciplined and more efficient development of user interfaces. The main objective of this paper is to demonstrate that standard modeling environments, based on the UML, can be adapted and efficiently used for user interfaces development. We have integrated the HCI knowledge into developing processes by semantically enriching the models created in each of the process activities of the process. By using UML, we can make easier use of HCI knowledge for ordinary software engineers who, usually, are not familiar with results of HCI researches, so these results can have broader and more practical effects. By providing a standard means for representing human computer interaction, we can seamlessly transfer UML models of multimodal interfaces between design and specialized analysis tools. Standardization provides a significant driving force for further progress because it codifies best practices enables and encourages reuse, and facilitates inter working between complementary tools. Proposed solutions can be valuable for software developers, who can improve quality of user interfaces and their communication with user interface designers, as well as for human computer interaction researchers, who can use standard methods to include their results into software developing processes.


Author(s):  
Rocco Servidio ◽  
Barry Davies ◽  
Kevin Hapeshi

Human-Computer Interaction (HCI) studies play an important role in the design, implementation, and evaluation of a new generation of graphical user interfaces designed to support consumer behaviours and information needs. In recent years, the spread of new virtual environments and innovative tools have revolutionized the field of e-commerce. Although new digital environments can enable or facilitate certain user activities, the quality of the user interface will remain a continuing challenge. The chapter aims to underline the relationships between HCI studies and consumer behaviour, focusing attention on virtual environments for electronic and Internet e-commerce (online retail) services. The potential of multi-modal interfaces and virtual environments for business and marketing are examined by: (1) providing an overview of the relationships between HCI and consumer behaviour, (2) showing how different interaction modalities can enhance the communication process between user and consumer system, (3) showing how digital and interactive technologies can offer to the consumer many advantages and unique opportunities in exploring information and products, and (4) new directions for possible future research.


Sign in / Sign up

Export Citation Format

Share Document