Traffic and Network Performance Monitoring for Effective Quality of Service and Network Management

Author(s):  
P. Papantoni-Kazakos ◽  
A. T. Burrell

The authors consider distributed mobile networks carrying time-varying heterogeneous traffics. To deal effectively with the mobile and time-varying distributed environment, the deployment of traffic and network performance monitoring techniques is necessary for the identification of traffic changes, network failures, and also for the facilitation of protocol adaptations and topological modifications. Concurrently, the heterogeneous traffic environment necessitates the deployment of hybrid information transport techniques. This chapter discusses the design, analysis, and evaluation of distributed and dynamic techniques which manage the traffic and monitor the network performance effectively, while capturing the dynamics inherent in the mobile heterogeneous environments. Specifically, the design of a monitoring sub-network is sought, where the arising research tasks include: • the adoption of a core sequential algorithm which monitors both the variations in the rates of the information data flows and the dynamics of the network performance. • The identification of the specific operational and performance characteristics of the monitoring systems, when the core algorithm is implemented in a distributed environment; for a given network topology, it is important to identify the minimum size monitoring sub-network for complete “visibility” of data flows and network functions. • Dynamically changing monitoring sub-network architectures, as functions of time-varying network topologies. • The deployment of Artificial Intelligence learning techniques, in the presence of dynamically changing network and information flow environments, to appropriately adapt crucial operational parameters of the data monitoring algorithms.

Author(s):  
Ramon Perez ◽  
Jaime Garcia-Reinoso ◽  
Aitor Zabala ◽  
Pablo Serrano ◽  
Albert Banchs

AbstractThe fifth generation (5G) of mobile networks is designed to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support the optimization of the network performance and validation of the KPIs, there exist the necessity of a flexible and efficient monitoring system and capable of realizing multi-site and multi-stakeholder scenarios. Nevertheless, for the evolution from 5G to 6G, the network is envisioned as a user-driven, distributed Cloud computing system where the resource pool is foreseen to integrate the participating users. In this paper, we present a distributed monitoring architecture for Beyond 5G multi-site platforms, where different stakeholders share the resource pool in a distributed environment. Taking advantage of the usage of publish-subscribe mechanisms adapted to the Edge, the developed lightweight monitoring solution can manage large amounts of real-time traffic generated by the applications located in the resource pool. We assess the performance of the implemented paradigm, revealing some interesting insights about the platform, such as the effect caused by the throughput of monitoring data in performance parameters such as the latency and packet loss, or the presence of a saturation effect due to software limitations that impacts in the performance of the system under specific conditions. In the end, the performance evaluation process has confirmed that the monitoring platform suits the requirements of the proposed scenarios, being capable of handling similar workloads in real 5G and Beyond 5G scenarios, then discussing how the architecture could be mapped to these real scenarios.


Grid Networks ◽  
2006 ◽  
pp. 253-275
Author(s):  
Richard Hughes-Jones ◽  
Yufeng Xin ◽  
Gigi Karmous-Edwards ◽  
John Strand

Sign in / Sign up

Export Citation Format

Share Document