Residual Life Estimation of Humidity Sensor DHT11 Using Artificial Neural Networks

2022 ◽  
pp. 971-986
Author(s):  
Pardeep Kumar Sharma ◽  
Cherry Bhargava

Electronic systems have become an integral part of our daily lives. From toy to radar, system is dependent on electronics. The health conditions of humidity sensor need to be monitored regularly. Temperature can be taken as a quality parameter for electronics systems, which work under variable conditions. Using various environmental testing techniques, the performance of DHT11 has been analysed. The failure of humidity sensor has been detected using accelerated life testing, and an expert system is modelled using various artificial intelligence techniques (i.e., Artificial Neural Network, Fuzzy Inference System, and Adaptive Neuro-Fuzzy Inference System). A comparison has been made between the response of actual and prediction techniques, which enable us to choose the best technique on the basis of minimum error and maximum accuracy. ANFIS is proven to be the best technique with minimum error for developing intelligent models.

Author(s):  
Pardeep Kumar Sharma ◽  
Cherry Bhargava

Electronic systems have become an integral part of our daily lives. From toy to radar, system is dependent on electronics. The health conditions of humidity sensor need to be monitored regularly. Temperature can be taken as a quality parameter for electronics systems, which work under variable conditions. Using various environmental testing techniques, the performance of DHT11 has been analysed. The failure of humidity sensor has been detected using accelerated life testing, and an expert system is modelled using various artificial intelligence techniques (i.e., Artificial Neural Network, Fuzzy Inference System, and Adaptive Neuro-Fuzzy Inference System). A comparison has been made between the response of actual and prediction techniques, which enable us to choose the best technique on the basis of minimum error and maximum accuracy. ANFIS is proven to be the best technique with minimum error for developing intelligent models.


Author(s):  
Panchand Jha

<span>Inverse kinematics of manipulator comprises the computation required to find the joint angles for a given Cartesian position and orientation of the end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network and adaptive neural fuzzy inference system techniques can be gainfully used to yield the desired results. This paper proposes structured artificial neural network (ANN) model and adaptive neural fuzzy inference system (ANFIS) to find the inverse kinematics solution of robot manipulator. The ANN model used is a multi-layered perceptron Neural Network (MLPNN). Wherein, gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that ANFIS gives better result and minimum error as compared to ANN.</span>


Sign in / Sign up

Export Citation Format

Share Document