streamflow forecasting
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 174)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Zhongrun Xiang ◽  
Ibrahim Demir

Recent studies using latest deep learning algorithms such as LSTM (Long Short-Term Memory) have shown great promise in time-series modeling. There are many studies focusing on the watershed-scale rainfall-runoff modeling or streamflow forecasting, often considering a single watershed with limited generalization capabilities. To improve the model performance, several studies explored an integrated approach by decomposing a large watershed into multiple sub-watersheds with semi-distributed structure. In this study, we propose an innovative physics-informed fully-distributed rainfall-runoff model, NRM-Graph (Neural Runoff Model-Graph), using Graph Neural Networks (GNN) to make full use of spatial information including the flow direction and geographic data. Specifically, we applied a time-series model on each grid cell for its runoff production. The output of each grid cell is then aggregated by a GNN as the final runoff at the watershed outlet. The case study shows that our GNN based model successfully represents the spatial information in predictions. NRM-Graph network has shown less over-fitting and a significant improvement on the model performance compared to the baselines with spatial information. Our research further confirms the importance of spatially distributed hydrological information in rainfall-runoff modeling using deep learning, and we encourage researchers to incorporate more domain knowledge in modeling.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaomei Sun ◽  
Haiou Zhang ◽  
Jian Wang ◽  
Chendi Shi ◽  
Dongwen Hua ◽  
...  

AbstractReliable and accurate streamflow forecasting plays a vital role in the optimal management of water resources. To improve the stability and accuracy of streamflow forecasting, a hybrid decomposition-ensemble model named VMD-LSTM-GBRT, which is sensitive to sampling, noise and long historical changes of streamflow, was established. The variational mode decomposition (VMD) algorithm was first applied to extract features, which were then learned by several long short-term memory (LSTM) networks. Simultaneously, an ensemble tree, a gradient boosting tree for regression (GBRT), was trained to model the relationships between the extracted features and the original streamflow. The outputs of these LSTMs were finally reconstructed by the GBRT model to obtain the forecasting streamflow results. A historical daily streamflow series (from 1/1/1997 to 31/12/2014) for Yangxian station, Han River, China, was investigated by the proposed model. VMD-LSTM-GBRT was compared with respect to three aspects: (1) feature extraction algorithm; ensemble empirical mode decomposition (EEMD) was used. (2) Feature learning techniques; deep neural networks (DNNs) and support vector machines for regression (SVRs) were exploited. (3) Ensemble strategy; the summation strategy was used. The results indicate that the VMD-LSTM-GBRT model overwhelms all other peer models in terms of the root mean square error (RMSE = 36.3692), determination coefficient (R2 = 0.9890), mean absolute error (MAE = 9.5246) and peak percentage threshold statistics (PPTS(5) = 0.0391%). The addressed approach based on the memory of long historical changes with deep feature representations had good stability and high prediction precision.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Huseyin Cagan Kilinc ◽  
Bulent Haznedar

River flow modeling plays a crucial role in water resource management and ensuring its sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes through modeling, applicable and highly reliable methods have also been used to analyze the sustainability of water resources. Artificial neural networks and deep learning-based hybrid models have been used by scientists in river flow predictions. Therefore, in this study, we propose a hybrid approach, integrating long-short-term memory (LSTM) networks and a genetic algorithm (GA) for streamflow forecasting. The performance of the hybrid model and the benchmark model was taken into account using daily flow data. For this purpose, the daily river flow time series of the Beyderesi-Kılayak flow measurement station (FMS) from September 2000 to June 2019 and the data from Yazıköy from December 2000 to June 2018 were used for flow measurements on the Euphrates River in Turkey. To validate the performance of the model, the first 80% of the data were used for training, and the remaining 20% were used for the testing of the two FMSs. Statistical methods such as linear regression was used during the comparison process to assess the proposed method’s performance and to demonstrate its superior predictive ability. The estimation results of the models were evaluated with RMSE, MAE, MAPE, STD and R2 statistical metrics. The comparison of daily streamflow predictions results revealed that the LSTM-GA model provided promising accuracy results and mainly presented higher performance than the benchmark model and the linear regression model.


2021 ◽  
Author(s):  
Ibrahim Demir ◽  
Zhongrun Xiang ◽  
Bekir Zahit Demiray ◽  
Muhammed Sit

This study proposes a comprehensive benchmark dataset for streamflow forecasting, WaterBench, that follows FAIR data principles that is prepared with a focus on convenience for utilizing in data-driven and machine learning studies, and provides benchmark performance for state-of-art deep learning architectures on the dataset for comparative analysis. By aggregating the datasets of streamflow, precipitation, watershed area, slope, soil types, and evapotranspiration from federal agencies and state organizations (i.e., NASA, NOAA, USGS, and Iowa Flood Center), we provided the WaterBench for hourly streamflow forecast studies. This dataset has a high temporal and spatial resolution with rich metadata and relational information, which can be used for varieties of deep learning and machine learning research. We defined a sample streamflow forecasting task for the next 120 hours and provided performance benchmarks on this task with sample linear regression and deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and S2S (Sequence-to-sequence). To some extent, WaterBench makes up for the lack of a unified benchmark in earth science research. We highly encourage researchers to use the WaterBench for deep learning research in hydrology.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Sergei Borsch ◽  
Yuri Simonov ◽  
Andrei Khristoforov ◽  
Natalia Semenova ◽  
Valeria Koliy ◽  
...  

This paper presents a method of hydrograph extrapolation, intended for simple and efficient streamflow forecasting with up to 10 days lead time. The forecast of discharges or water levels is expressed by a linear formula depending on their values on the date of the forecast release and the five previous days. Such forecast techniques were developed for more than 2700 stream gauging stations across Russia. Forecast verification has shown that this method can be successfully applied to large rivers with a smooth shape of hydrographs, while for small mountain catchments, the accuracy of the method tends to be lower. The method has been implemented into real-time continuous operations in the Hydrometcentre of Russia. In the territory of Russia, 18 regions have been identified with a single dependency of the maximum lead time of good forecasts on the area and average slope of the catchment surface for different catchments of each region; the possibilities of forecasting river streamflow by the method of hydrograph extrapolation are approximately estimated. The proposed method can be considered as a first approximation while solving the problem of forecasting river flow in conditions of a lack of meteorological information or when it is necessary to quickly develop a forecasting system for a large number of catchments.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 188
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Sungwook Wi ◽  
Aleix Serrat-Capdevila ◽  
Tirthankar Roy

The combination of Hydrological Models and high-resolution Satellite Precipitation Products (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines for the quantification, propagation, and reduction in hydrological uncertainty when generating streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting (VEF) approach. In this regard, we describe and discuss the main steps required to implement, calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and forecast them up to eight days in the future. The forecasting process called short- to medium-range (SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT, the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS, HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal parameter sets estimated during the calibration process to increase the number of ensembles available for operational forecasting. Finally, inference-based approaches were evaluated during the application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and optimal parameter sets, was significantly achieved through a fully operational implementation of VEF combined with several HPS. Finally, the main challenges and opportunities associated with operational SR2MR streamflow forecasting using VEF are evaluated and discussed.


2021 ◽  
Vol 13 (24) ◽  
pp. 5022
Author(s):  
Camille Garnaud ◽  
Vincent Vionnet ◽  
Étienne Gaborit ◽  
Vincent Fortin ◽  
Bernard Bilodeau ◽  
...  

As part of the National Hydrological Services Transformation Initiative, Environment and Climate Change Canada (ECCC) designed and implemented the National Surface and River Prediction System (NSRPS) in order to provide surface and river flow analysis and forecast products across Canada. Within NSRPS, the Canadian Land Data Assimilation System (CaLDAS) produces snow analyses that are used to initialise the land surface model, which in turn is used to force the river routing component. Originally, CaLDAS was designed to improve atmospheric forecasts with less focus on hydrological processes. When snow data assimilation occurs, the related increments remove/add water from/to the system, which can sometimes be problematic for streamflow forecasting, in particular during the snowmelt period. In this study, a new snow analysis method introduces multiple innovations that respond to the need for higher quality snow analyses for hydrological purposes, including the use of IMS snow cover extent data instead of in situ snow depth observations. The results show that the new snow assimilation methodology brings an overall improvement to snow analyses and substantially enhances water conservation, which is reflected in the generally improved streamflow simulations. This work represents a first step towards a new snow data assimilation process in CaLDAS, with the final objective of producing a reliable snow analysis to initialise and improve NWP as well as environmental predictions, including flood and drought forecasts.


Sign in / Sign up

Export Citation Format

Share Document