Membrane Micro Electro-Mechanical Systems for Industrial Applications

Author(s):  
Mario Versaci ◽  
Francesco Carlo Morabito

The objective of this chapter is to provide the analytical-numerical tools for the simplified rewriting of the most important mathematical models of MEMS membrane devices for Mechatronics, exploiting advanced concepts and results in the theory of curves and surfaces. Moreover, when the solution in closed form could not be obtained (that is, it is impossible to obtain the membrane deflection analytically), some consolidated techniques will be described both to obtain conditions ensuring existence/uniqueness of the solution, and the most suitable approaches for obtaining numerical solutions in the absence of ghost solutions. Finally, some practical examples will illustrate the approaches presented.

2020 ◽  
Vol 32 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Ahmad Athif Mohd Faudzi ◽  
Yaser Sabzehmeidani ◽  
Koichi Suzumori ◽  
◽  
◽  
...  

This paper presents a review of the current applications of Micro-Electro-Mechanical Systems (MEMS) in the robotics and industrial applications. MEMS are widely used as actuators or sensors in numerous respects of our daily life as well as automation lines and industrial applications. Intersection of founding new polymers and composites such as silicon and micro manufacturing technologies performing micro-machining and micro-assembly brings about remarkable growth of application and efficacy of MEMS devices. MEMS indicated huge improvement in size reduction, higher reliability, multi-functionality, customized design, and power usage. Demonstration of various devices and technologies utilized in robotics and industrial applications are illustrated in this article along with the use and the role of silicon in the development of the sensors. Some future trends and its perspectives are also discussed.


2011 ◽  
Vol 36 (7) ◽  
pp. 1089 ◽  
Author(s):  
Wei-Chao Chiu ◽  
Chun-Che Chang ◽  
Jiun-Ming Wu ◽  
Ming-Chang M. Lee ◽  
Jia-Min Shieh

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1228 ◽  
Author(s):  
Dorothy Anne Hardy ◽  
Zahra Rahemtulla ◽  
Achala Satharasinghe ◽  
Arash Shahidi ◽  
Carlos Oliveira ◽  
...  

Electronically active yarn (E-yarn) pioneered by the Advanced Textiles Research Group of Nottingham Trent University contains a fine conductive copper wire soldered onto a package die, micro-electro-mechanical systems device or flexible circuit. The die or circuit is then held within a protective polymer packaging (micro-pod) and the ensemble is inserted into a textile sheath, forming a flexible yarn with electronic functionality such as sensing or illumination. It is vital to be able to wash E-yarns, so that the textiles into which they are incorporated can be treated as normal consumer products. The wash durability of E-yarns is summarized in this publication. Wash tests followed a modified version of BS EN ISO 6330:2012 procedure 4N. It was observed that E-yarns containing only a fine multi-strand copper wire survived 25 cycles of machine washing and line drying; and between 5 and 15 cycles of machine washing followed by tumble-drying. Four out of five temperature sensing E-yarns (crafted with thermistors) and single pairs of LEDs within E-yarns functioned correctly after 25 cycles of machine washing and line drying. E-yarns that required larger micro-pods (i.e., 4 mm diameter or 9 mm length) were less resilient to washing. Only one out of five acoustic sensing E-yarns (4 mm diameter micro-pod) operated correctly after 20 cycles of washing with either line drying or tumble-drying. Creating an E-yarn with an embedded flexible circuit populated with components also required a relatively large micro-pod (diameter 0.93 mm, length 9.23 mm). Only one embedded circuit functioned after 25 cycles of washing and line drying. The tests showed that E-yarns are suitable for inclusion in textiles that require washing, with some limitations when larger micro-pods were used. Reduction in the circuit’s size and therefore the size of the micro-pod, may increase wash resilience.


2008 ◽  
Vol 3 (1) ◽  
pp. 37-43
Author(s):  
Lianqun Zhou ◽  
Yihui Wu ◽  
Ping Zhang ◽  
Ming Xuan ◽  
Zhenggang Li ◽  
...  

Author(s):  
M. Martinez ◽  
B. Rocha ◽  
M. Li ◽  
G. Shi ◽  
A. Beltempo ◽  
...  

The National Research Council of Canada has developed Structural Health Monitoring (SHM) test platforms for load and damage monitoring, sensor system testing and validation. One of the SHM platform consists of two 2.25 meter long, simple cantilever aluminium beams that provide a perfect scenario for evaluating the capability of a load monitoring system to measure bending, torsion and shear loads. In addition to static and quasi-static loading procedures, these structures can be fatigue loaded using a realistic aircraft usage spectrum while SHM and load monitoring systems are assessed for their performance and accuracy. In this study, Micro-Electro-Mechanical Systems (MEMS), consisting of triads of gyroscopes, accelerometers and magnetometers, were used to compute changes in angles at discrete stations along the structure. A Least Squares based algorithm was developed for polynomial fitting of the different data obtained from the MEMS installed in several spatial locations of the structure. The angles obtained from the MEMS sensors were fitted with a second, third and/or fourth order degree polynomial surface, enabling the calculation of displacements at every point. The use of a novel Kalman filter architecture was evaluated for an accurate angle and subsequent displacement estimation. The outputs of the newly developed algorithms were then compared to the displacements obtained from the Linear Variable Displacement Transducers (LVDT) connected to the structures. The determination of the best Least Squares based polynomial fit order enabled the application of derivative operators with enough accuracy to permit the calculation of strains along the structure. The calculated strain values were subsequently compared to the measurements obtained from reference strain gauges installed at different locations on the structure. This new approach for load monitoring was able to provide accurate estimates of applied strains and loads.


Sign in / Sign up

Export Citation Format

Share Document