Modeling and Optimization of Evacuated Tubular Solar Thermal Collector

Modeling and optimization of evacuated tubular solar thermal collector (ETSTC) is discussed using a modified simple additive weighting (M-SAW) method. To improve the system efficiency (η) and end day temperature (Tsfd), ETSTC parameter (i.e., start day temperature [Tsid], ambient temperature [Tad], global solar radiation on tilted surface [GT], and wind speed [Ws]) are optimized. The applied method is significantly improved the efficiency (η) and determined the best setting for ETSCT. Test no.10 is the optimal experimental trail run and corresponding collector efficiency is obtained as 43%. Further, experimental data are statistically tested via parametric, ANOVA analysis, and found satisfactory and acceptable. Last, confirmatory tests results show comparable and acceptable w.r.t. experimental results for the optimal setting obtained through proposed method. The proposed MCDM method can be recognized as potential use for modeling and optimization of other thermal systems.

Author(s):  
T. T. Chow ◽  
J. Ji ◽  
W. He

Photovoltaic-thermal (PV/T) systems integrate photovoltaic and solar thermal technologies into one single system with dual production of electricity and heat energy. A typical arrangement is the direct attachment of PV modules on to a solar thermal collector surface. For a given collector surface area, the overall system energy performance is expected higher than the conventional “side-by-side” PV and solar thermal systems. In the development of PV/T collector technology using water as the coolant, the most common design follows the sheet-and-tube thermal absorber concept. Fin performance of the thermal absorber has been identified as one important factor that affects much the overall energy performance of the collector. Accordingly, an aluminum-alloy flat-box type PV/T collector prototype was constructed and tested. Our test results indicate that a high combined thermal and electrical efficiency can be achieved. The primary-energy-saving efficiency for daily exposure approaches 65% at zero reduced temperature operation. With a simple and handy design, the product is considered to be very suitable for domestic application.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Todd P. Otanicar ◽  
Patrick E. Phelan ◽  
Robert A. Taylor ◽  
Himanshu Tyagi

Direct absorption solar thermal collectors have recently been shown to be a promising technology for photothermal energy conversion but many parameters affecting the overall performance of such systems have not been studied in depth, yet alone optimized. Earlier work has shown that the overall magnitude of the extinction coefficient can play a drastic role, with too high of an extinction coefficient actually reducing the efficiency. This study investigates how the extinction coefficient impacts the collector efficiency and how it can be tuned spatially to optimize the efficiency, and why this presents a unique design over conventional solar thermal collection systems. Three specific extinction profiles are investigated: uniform, linearly increasing, and exponentially increasing with the exponentially increasing profile demonstrating the largest efficiency improvement.


2006 ◽  
Vol 129 (2) ◽  
pp. 205-209 ◽  
Author(s):  
T. T. Chow ◽  
J. Ji ◽  
W. He

Photovoltaic-thermal (PV/T) systems integrate photovoltaic and solar thermal technologies into one single system with dual production of electricity and heat energy. A typical arrangement is the direct attachment of PV modules onto a solar thermal collector surface. For a given collector surface area, the overall system energy performance is expected higher than the conventional “side-by-side” PV and solar thermal systems. In the development of PV/T collector technology using water as the coolant, the most common design follows the sheet-and-tube thermal absorber concept. Fin performance of the thermal absorber has been identified as one important factor that affects much the overall energy performance of the collector. Accordingly, an aluminum-alloy flat-box type PV/T collector prototype was constructed and tested in Hong Kong. Our test results indicate that a high combined thermal and electrical efficiency can be achieved. The primary-energy-saving efficiency for daily exposure approaches 65% at zero reduced temperature operation. With a simple and handy design, the product is considered to be very suitable for domestic application.


Author(s):  
Todd P. Otanicar ◽  
Patrick E. Phelan ◽  
Robert A. Taylor ◽  
Himanshu Tyagi

Direct-absorption solar thermal collectors have recently been shown to be a promising technology for photothermal energy conversion but many parameters affecting the overall performance of such systems haven’t been studied in depth, yet alone optimized. Earlier work has shown that the overall magnitude of the extinction coefficient can play a drastic role, with too high of an extinction coefficient actually reducing the efficiency. This study investigates how the extinction coefficient impacts the collector efficiency and how it can be tuned as a function of depth to optimize the efficiency, and why this presents a unique design over conventional solar thermal collection systems. Three extinction profiles are investigated: uniform, linearly increasing, and exponentially increasing.


Author(s):  
Julia Maria Massareli Costa ◽  
Guilherme Viana ◽  
Vinicius Cruz ◽  
Felipe Boragina da silva ◽  
Ana Beatriz Valentin ◽  
...  

Author(s):  
David García-Menéndez ◽  
Juan Carlos Ríos-Fernández ◽  
Ana María Blanco-Marigorta ◽  
María José Suárez-López

Sign in / Sign up

Export Citation Format

Share Document