An Improved Generalized Quantum-Inspired Evolutionary Algorithm for Multiple Knapsack Problem

Author(s):  
Sulabh Bansal ◽  
C. Patvardhan

This article describes how the 0/1 Multiple Knapsack Problem (MKP), a generalization of popular 0/1 Knapsack Problem, is NP-hard and harder than simple Knapsack Problem. Solution of MKP involves two levels of choice – one for selecting an item to be placed and the other for selecting the knapsack in which it is to be placed. Quantum Inspired Evolutionary Algorithms (QIEAs), a subclass of Evolutionary algorithms, have been shown to be effective in solving difficult problems particularly NP-hard combinatorial optimization problems. QIEAs provide a general framework which needs to be customized according to the requirements of a given problem to obtain good solutions in reasonable time. An existing QIEA for MKP (QIEA-MKP) is based on the representation where a Q-bit collapse into a binary number. But decimal numbers are required to identify the knapsack where an item is placed. The implementation based on such representation suffers from overhead of frequent conversion from binary numbers to decimal numbers and vice versa. The generalized QIEA (GQIEA) is based on a representation where a Q-bit can collapse into an integer and thus no inter conversion between binary and decimal is required. A set of carefully selected features have been incorporated in proposed GQIEA-MKP to obtain better solutions in lesser time. Comparison with QIEA-MKP shows that GQIEA-MKP outperforms it in providing better solutions in lesser time for large sized MKPs. The generalization proposed can be used with advantage in other Combinatorial Optimization problems with integer strings as solutions.

2018 ◽  
Vol 9 (1) ◽  
pp. 17-51
Author(s):  
Sulabh Bansal ◽  
C. Patvardhan

This article describes how the 0/1 Multiple Knapsack Problem (MKP), a generalization of popular 0/1 Knapsack Problem, is NP-hard and harder than simple Knapsack Problem. Solution of MKP involves two levels of choice – one for selecting an item to be placed and the other for selecting the knapsack in which it is to be placed. Quantum Inspired Evolutionary Algorithms (QIEAs), a subclass of Evolutionary algorithms, have been shown to be effective in solving difficult problems particularly NP-hard combinatorial optimization problems. QIEAs provide a general framework which needs to be customized according to the requirements of a given problem to obtain good solutions in reasonable time. An existing QIEA for MKP (QIEA-MKP) is based on the representation where a Q-bit collapse into a binary number. But decimal numbers are required to identify the knapsack where an item is placed. The implementation based on such representation suffers from overhead of frequent conversion from binary numbers to decimal numbers and vice versa. The generalized QIEA (GQIEA) is based on a representation where a Q-bit can collapse into an integer and thus no inter conversion between binary and decimal is required. A set of carefully selected features have been incorporated in proposed GQIEA-MKP to obtain better solutions in lesser time. Comparison with QIEA-MKP shows that GQIEA-MKP outperforms it in providing better solutions in lesser time for large sized MKPs. The generalization proposed can be used with advantage in other Combinatorial Optimization problems with integer strings as solutions.


Author(s):  
S. Fidanova

The ant colony optimization algorithms and their applications on the multiple knapsack problem (MKP) are introduced. The MKP is a hard combinatorial optimization problem with wide application. Problems from different industrial fields can be interpreted as a knapsack problem including financial and other management. The MKP is represented by a graph, and solutions are represented by paths through the graph. Two pheromone models are compared: pheromone on nodes and pheromone on arcs of the graph. The MKP is a constraint problem which provides possibilities to use varied heuristic information. The purpose of the chapter is to compare a variety of heuristic and pheromone models and different variants of ACO algorithms on MKP.


2007 ◽  
Vol 15 (2) ◽  
pp. 169-198 ◽  
Author(s):  
Dong-Il Seo ◽  
Byung-Ro Moon

In optimization problems, the contribution of a variable to fitness often depends on the states of other variables. This phenomenon is referred to as epistasis or linkage. In this paper, we show that a new theory of epistasis can be established on the basis of Shannon's information theory. From this, we derive a new epistasis measure called entropic epistasis and some theoretical results. We also provide experimental results verifying the measure and showing how it can be used for designing efficient evolutionary algorithms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaodong Yan ◽  
Jiahui Ma ◽  
Tong Wu ◽  
Aoyang Zhang ◽  
Jiangbin Wu ◽  
...  

AbstractNeuromorphic hardware implementation of Boltzmann Machine using a network of stochastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial optimization problems to be efficiently solved. Efficient implementation of such Boltzmann Machine with simulated annealing desires the statistical parameters of the stochastic neurons to be dynamically tunable, however, there has been limited research on stochastic semiconductor devices with controllable statistical distributions. Here, we demonstrate a reconfigurable tin oxide (SnOx)/molybdenum disulfide (MoS2) heterogeneous memristive device that can realize tunable stochastic dynamics in its output sampling characteristics. The device can sample exponential-class sigmoidal distributions analogous to the Fermi-Dirac distribution of physical systems with quantitatively defined tunable “temperature” effect. A BM composed of these tunable stochastic neuron devices, which can enable simulated annealing with designed “cooling” strategies, is conducted to solve the MAX-SAT, a representative in NP-hard combinatorial optimization problems. Quantitative insights into the effect of different “cooling” strategies on improving the BM optimization process efficiency are also provided.


2010 ◽  
Vol 4 (1) ◽  
pp. 37-48
Author(s):  
Mozammel H.A. Khan

Quantum-Inspired Evolutionary Algorithm (QEA) has been shown to be better performing than classical Genetic Algorithm based evolutionary techniques for combinatorial optimization problems like 0/1 knapsack problem. QEA uses quantum computing-inspired representation of solution called Q-bit individual consisting of Q-bits. The probability amplitudes of the Q-bits are changed by application of Q-gate operator, which is classical analogous of quantum rotation operator. The Q-gate operator is the only variation operator used in QEA, which along with some problem specific heuristic provides exploitation of the properties of the best solutions. In this paper, we analyzed the characteristics of the QEA for 0/1 knapsack problem and showed that a probability in the range 0.3 to 0.4 for the application of the Q-gate variation operator has the greatest likelihood of making a good balance between exploration and exploitation. Experimental results agree with the analytical finding.


2015 ◽  
Vol 738-739 ◽  
pp. 323-333 ◽  
Author(s):  
Sheng Xiang ◽  
Yi Gang He

To improve the performance of quantum-inspired evolutionary algorithms (QIEAs), a new kind of QIEAs——elite group guided QIEA (EQIEA) are proposed through introducing an elite group guidance updating approach to solve knapsack problems. In EQIEA, the elite group at each iteration is composed of a certain number of individuals with better fitness values in the current population; all the individuals in the elite group cooperate together to affect quantum-inspired gates to produce off spring. Knapsack problems, a class of well-known NP-complete combinatorial optimization problems, are used to conduct experiments. The choices of parameters in EQIEA are discussed in an empirical way. Extensive experiments show that the EQIEA outperform six variants of QIEAs recently reported in the literature in terms of the quality of solutions. This paper also analyzes the convergence of EQIEA and the six variants of QIEAs. Experimental results show that EQIEA has better convergence than the six variants of QIEAs.


Sign in / Sign up

Export Citation Format

Share Document