An Adaptive Rayleigh-Laplacian Based MAP Estimation Technique for Despeckling SAR Images using Stationary Wavelet Transform

2013 ◽  
Vol 4 (4) ◽  
pp. 88-102
Author(s):  
Amlan Jyoti Das ◽  
Anjan Kumar Talukdar ◽  
Kandarpa Kumar Sarma

Removal of speckle noise from Synthetic Aperture Radar (SAR) images is an important step before performing any image processing operations on these images. This paper presents a novel Stationary Wavelet Transform (SWT) based technique for the purpose of removing the speckle noise from the SAR returns. Maximum a posteriori probability (MAP) condition which uses a prior knowledge is used to estimate the noise free wavelet coefficients. The proposed MAP estimator is designed for this purpose which uses Rayleigh distribution for modeling the speckle noise and Laplacian distribution for modeling the statistics of the noise free wavelet coefficients. The parameters required for MAP estimator is determined by technique used for parameter estimation after SWT. Moreover an Laplacian – Gaussian based MAP estimator is also applied and the parameter estimation is done using the same method used for the proposed algorithm. For the purpose of enhancing the visual quality and to restore more edge information, a wavelet based resolution enhancement technique is also used after applying the Inverse stationary Wavelet Transform (ISWT), using interpolation technique. The experimental results show that the proposed despeckling algorithm efficiently removes speckle noise from the SAR images and restores the edge information as well.

Author(s):  
AMLAN JYOTI DAS ◽  
ANJAN KUMAR TALUKDAR ◽  
Kandarpa Kumar Sarma

In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. The solution of the MAP estimator is based on the assumption that the wavelet coefficients have a known distribution. Rayleigh distribution is used for modeling the speckle noise and Laplacian distribution for modeling the statistics of the noise free wavelet coefficients for the purpose of designing the MAP estimator. Rayleigh distribution is used for modeling the speckle noise since speckle noise can be well described by it. The parameters required for MAP estimator is determined by the technique used for parameter estimation after SWT. The experimental results show that the proposed despeckling algorithm efficiently removes speckle noise from the SAR images.


Author(s):  
Emmanuel D. Blanchard ◽  
Adrian Sandu ◽  
Corina Sandu

Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo for quantifying the effects of such uncertainties on the system response. Many uncertain parameters cannot be measured accurately, especially in real time applications. Information about them is obtained via parameter estimation techniques. Parameter estimation for large systems is a difficult problem, and the solution approaches are computationally expensive. This paper proposes a new computational approach for parameter estimation based on the extended Kalman filter (EKF) and the polynomial chaos theory for parameter estimation. The error covariances needed by EKF are computed from polynomial chaos expansions, and the EKF is used to update the polynomial chaos representation of the uncertain states and the uncertain parameters. The proposed method is applied to a nonlinear four degree of freedom roll plane model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. The main advantages of this method are an accurate representation of uncertainties via polynomial chaos, a computationally efficient update formula based on EKF, and the ability to provide a posteriori probability densities of the estimated parameters. The method is able to deal with non-Gaussian parametric uncertainties. The paper identifies and theoretically explains a possible weakness of the EKF with approximate covariances: numerical errors due to the truncation in the polynomial chaos expansions can accumulate quickly when measurements are taken at a fast sampling rate. To prevent filter divergence, we propose to lower the sampling rate and to take a smoother approach where time-distributed observations are all processed at once. We propose a parameter estimation approach that uses polynomial chaos to propagate uncertainties and estimate error covariances in the EKF framework. Parameter estimates are obtained in the form of polynomial chaos expansion, which carries information about the a posteriori probability density function. The method is illustrated on a roll plane vehicle model.


Author(s):  
Abhishek Sharma ◽  
Tarun Gulati

The major issue of concern in change detection process is the accuracy of the algorithm to recover changed and unchanged pixels. The fusion rules presented in the existing methods could not integrate the features accurately which results in more number of false alarms and speckle noise in the output image. This paper proposes an algorithm which fuses two multi-temporal images through proposed set of fusion rules in stationary wavelet transform. In the first step, the source images obtained from log ratio and mean ratio operators are decomposed into three high frequency sub-bands and one low frequency sub-band by stationary wavelet transform. Then, proposed fusion rules for low and high frequency sub-bands are applied on the coefficient maps to get the fused wavelet coefficients map. The fused image is recovered by applying the inverse stationary wavelet transform (ISWT) on the fused coefficient map. Finally, the changed and unchanged areas are classified using Fuzzy c means clustering. The performance of the algorithm is calculated in terms of percentage correct classification (PCC), overall error (OE) and Kappa coefficient (K<sub>c</sub>). The qualitative and quantitative results prove that the proposed method offers least error, highest accuracy and Kappa value as compare to its preexistences.


Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 5187-5194
Author(s):  
Chenyang Liang ◽  
Ning He

Interventional catheterization can help patients to accurately assess the condition, early diagnosis and intervention. Confirming the location of catheter by ultrasound has the advantages of real-time imaging, non-invasive, radiative, fast and convenient. Due to speckle noise and similar acoustic impedance, ultrasound images are not clear. In this paper an ultrasonic image processing algorithm based on wavelet transform and fuzzy theory is proposed. First, logarithmic transformation of ultrasound images is used to convert multiplicative noise into additive noise. Then the wavelet coefficients of the image are obtained by multiscale wavelet transform. The high frequency wavelet coefficients of the image are denoised by thresholding, and the low-frequency wavelet coefficients of the image are processed by fuzzy enhancement. Finally, the processed image is obtained through wavelet reconstruction and exponential transformation. Experiments show that this proposed method can effectively improve the visual effect of images.


Sign in / Sign up

Export Citation Format

Share Document