multipath channel
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 46)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 71 (2) ◽  
pp. 024101-024101
Author(s):  
Lu Xi-Cheng ◽  
◽  
Qiu Yang ◽  
Tian Jin ◽  
Wang Hai-Bo ◽  
...  

Author(s):  
Yahya Harbi ◽  
ALI AL-JANABI ◽  
Hayder Almusa ◽  
Marwa Chafii ◽  
Alister Burr

The Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) scheme represents the dominant radio interface for broadband multicarrier communication systems. However, with insufficient Cyclic Prefixes (CP), Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI) occur due to the time-varying multipath channel. This means that the performance of the system will be degraded. In this paper, we investigate the interference problem for a MIMO Discrete Wavelet Transform (MIMO-DWT) system under the effect of the downlink LTE channel. A Low-Density Parity-Check (LDPC) decoder is used to estimate the decoded signal. The proposed iterative algorithm uses the estimated decoded signal to compute the components required for ICI/ISI interference reduction. In this paper, Iterative Interference Cancellation (IIC) is employed to mitigate the effects of interference that contaminates the received signal due to multiple antenna transmission and a multipath channel. An equalizer with minimum mean square error is considered. We compare the performance of our proposed algorithm with the traditional MIMO-OFDM scheme in terms of bit error probability under insufficient CP. Simulation results verify that significant improvements are achieved by using IIC and MIMO-IIC for both systems.


2021 ◽  
Vol 16 ◽  
pp. 541-559
Author(s):  
Vyacheslav Tuzlukov

Group-blind multiuser detectors for uplink code-division multiple-access (CDMA) were developed by Wang and Host-Madsen. These detectors make use of the spreading sequences of known users to construct a group constraint to suppress the intracell interference. However, such techniques demand the estimation of the multipath channels and the delays of the known users. In the present paper, the blind generalized receiver is de-veloped for CDMA in fading multipath channels. The proposed generalized receiver utilizes the correlation in-formation between consecutively received signals to generate the corresponding group constraint. It is shown that by incorporating this group constraint, the proposed generalized receiver can provide different performance gains in both the uplink and downlink environments. Compared with the well-known group-blind detectors, our new methods only need to estimate the multipath channel of the desired user and do not require the channel es-timation of other users. Simulation results demonstrate that the proposed generalized receiver outperforms the conventional blind linear multiuser detectors.


Author(s):  
Noor Nateq Alfaisaly ◽  
Suhad Qasim Naeem ◽  
Azhar Hussein Neama

Worldwide interoperability microwave access (WiMAX) is an 802.16 wireless standard that delivers high speed, provides a data rate of 100 Mbps and a coverage area of 50 km. Voice over internet protocol (VoIP) is flexible and offers low-cost telephony for clients over IP. However, there are still many challenges that must be addressed to provide a stable and good quality voice connection over the internet. The performance of various parameters such as multipath channel model and bandwidth over the Star trajectoryWiMAX network were evaluated under a scenario consisting of four cells. Each cell contains one mobile and one base station. Network performance metrics such as throughput and MOS were used to evaluate the best performance of VoIP codecs. Performance was analyzed via OPNET program14.5. The result use of multipath channel model (disable) was better than using the model (ITU pedestrian A). The value of the throughput at 15 dB was approximately 1600 packet/sec, and at -1 dB was its value 1300 packet/se. According to data, the Multipath channel model of the disable type the value of the MOS was better than the ITU Pedestrian A type.


2021 ◽  
Author(s):  
Tao Fang ◽  
Songzuo Liu ◽  
XiongBiao Wu ◽  
Honglu Yan ◽  
Imran Ullah Khan

Sign in / Sign up

Export Citation Format

Share Document