Multilevel Thresholding for Image Segmentation Based on Cellular Metaheuristics

2018 ◽  
Vol 9 (4) ◽  
pp. 1-32 ◽  
Author(s):  
Mohamed Abdou Bouteldja ◽  
Mohamed Baadeche ◽  
Mohamed Batouche

This article describes how multilevel thresholding image segmentation is a process used to partition an image into well separated regions. It has various applications such as object recognition, edge detection, and particle counting, etc. However, it is computationally expensive and time consuming. To alleviate these limitations, nature inspired metaheuristics are widely used to reduce the computational complexity of such problem. In this article, three cellular metaheuristics namely cellular genetic algorithm (CGA), cellular particle swarm optimization (CPSO) and cellular differential evolution (CDE) are adapted to solve the multilevel thresholding image segmentation problem. Experiments are conducted on different test images to assess the performance of the cellular algorithms in terms of efficiency, quality and stability based on the between-class variance and Kapur's entropy as objective functions. The experimental results have shown that the proposed cellular algorithms compete with and even outperform existing methods for multilevel thresholding image segmentation.

2018 ◽  
pp. 771-797
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2012 ◽  
Vol 532-533 ◽  
pp. 1741-1746 ◽  
Author(s):  
Zheng Tao Peng ◽  
Kang Ling Fang ◽  
Zhi Qi Su ◽  
Shi Hong Li

To determine the optimal thresholds in image segmentation, a new multilevel thresholding method based on improved particle swarm optimization (IPSO) is proposed in this paper. Firstly, use the conception of independent peaks to divide the histogram to several regions, secondly, the optimization object function using maximum between-class variance (MV) method can be gotten in each area, by the non-uniform mutation and Geese-LDW PSO optimization of the object function, the optimal thresholds can be gotten, and the image can be segmented with the thresholds. Compared with the basic MV algorithm and genetic algorithm (GA) modified MV, the experimental results show that the new method not only realizes the image segmentation well, but also improves the speed.


2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2020 ◽  
Vol 11 (4) ◽  
pp. 64-90
Author(s):  
Falguni Chakraborty ◽  
Provas Kumar Roy ◽  
Debashis Nandi

Multilevel thresholding plays a significant role in the arena of image segmentation. The main issue of multilevel image thresholding is to select the optimal combination of threshold value at different level. However, this problem has become challenging with the higher number of levels, because computational complexity is increased exponentially as the increase of number of threshold. To address this problem, this paper has proposed elephant herding optimization (EHO) based multilevel image thresholding technique for image segmentation. The EHO method has been inspired by the herding behaviour of elephant group in nature. Two well-known objective functions such as ‘Kapur's entropy' and ‘between-class variance method' have been used to determine the optimized threshold values for segmentation of different objects from an image. The performance of the proposed algorithm has been verified using a set of different test images taken from a well-known benchmark dataset named Berkeley Segmentation Dataset (BSDS). For comparative analysis, the results have been compared with three popular algorithms, e.g. cuckoo search (CS), artificial bee colony (ABC) and particle swarm optimization (PSO). It has been observed that the performance of the proposed EHO based image segmentation technique is efficient and promising with respect to the others in terms of the values of optimized thresholds, objective functions, peak signal-to-noise ratio (PSNR), structure similarity index (SSIM) and feature similarity index (FSIM). The algorithm also shows better convergence profile than the other methods discussed.


2019 ◽  
Vol 10 (3) ◽  
pp. 91-106
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is widely used in brain magnetic resonance (MR) image segmentation. In this article, a multilevel thresholding-based brain MR image segmentation technique is proposed. The image is first filtered using anisotropic diffusion. Then multilevel thresholding based on particle swarm optimization (PSO) is performed on the filtered image to get the final segmented image. Otsu function is used to select the thresholds. The proposed technique is compared with standard PSO and bacterial foraging optimization (BFO) based multilevel thresholding techniques. The objective image quality metrics such as Peak Signal to Noise Ratio (PSNR) and Mean Structural SIMilarity (MSSIM) index are used to evaluate the quality of the segmented images. The experimental results suggest that the proposed technique gives significantly better-quality image segmentation compared to the other techniques when applied to T2-weitghted brain MR images.


2021 ◽  
Vol 10 (6) ◽  
pp. 3422-3431
Author(s):  
Issa Ahmed Abed ◽  
May Mohammed Ali ◽  
Afrah Abood Abdul Kadhim

In this paper the benchmarking functions are used to evaluate and check the particle swarm optimization (PSO) algorithm. However, the functions utilized have two dimension but they selected with different difficulty and with different models. In order to prove capability of PSO, it is compared with genetic algorithm (GA). Hence, the two algorithms are compared in terms of objective functions and the standard deviation. Different runs have been taken to get convincing results and the parameters are chosen properly where the Matlab software is used. Where the suggested algorithm can solve different engineering problems with different dimension and outperform the others in term of accuracy and speed of convergence.


Sign in / Sign up

Export Citation Format

Share Document