A Visual Saliency Detection Approach by Fusing Low-Level Priors With High-Level Priors

Author(s):  
Monika Singh ◽  
Anand Singh Singh Jalal ◽  
Ruchira Manke ◽  
Aamir Khan

Saliency detection has always been a challenging and interesting research area for researchers. The existing methodologies either focus on foreground regions or background regions of an image by computing low-level features. However, considering only low-level features did not produce worthy results. In this paper, low-level features, which are extracted using super pixels, are embodied with high-level priors. The background features are assumed as the low-level prior due to the similarity in the background areas and boundary of an image which are interconnected and have minimum distance in between them. High-level priors such as location, color, and semantic prior are incorporated with low-level prior to spotlight the salient area in the image. The experimental results illustrate that the proposed approach outperform the sate-of-the-art methods.

Author(s):  
Jing Tian ◽  
Weiyu Yu

Visual saliency detection aims to produce saliency map of images via simulating the behavior of the human visual system (HVS). An ant-inspired approach is proposed in this chapter. The proposed approach is inspired by the ant’s behavior to find the most saliency regions in image, by depositing the pheromone information (through ant’s movements) on the image to measure its saliency. Furthermore, the ant’s movements are steered by the local phase coherence of the image. Experimental results are presented to demonstrate the superior performance of the proposed approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zhong Chen ◽  
Shengwu Xiong ◽  
Qingzhou Mao ◽  
Zhixiang Fang ◽  
Xiaohan Yu

Saliency can be described as the ability of an item to be detected from its background in any particular scene, and it aims to estimate the probable location of the salient objects. Due to the salient map that computed by local contrast features can extract and highlight the edge parts including painting lines of Flying Apsaras, in this paper, we proposed an improved approach based on a frequency-tuned method for visual saliency detection of Flying Apsaras in the Dunhuang Grotto Murals, China. This improved saliency detection approach comprises three important steps: (1) image color and gray channel decomposition; (2) gray feature value computation and color channel convolution; (3) visual saliency definition based on normalization of previous visual saliency and spatial attention function. Unlike existing approaches that rely on many complex image features, this proposed approach only used local contrast and spatial attention information to simulate human’s visual attention stimuli. This improved approach resulted in a much more efficient salient map in the aspect of computing performance. Furthermore, experimental results on the dataset of Flying Apsaras in the Dunhuang Grotto Murals showed that the proposed visual saliency detection approach is very effective when compared with five other state-of-the-art approaches.


2012 ◽  
Vol 48 (25) ◽  
pp. 1591-1593 ◽  
Author(s):  
Di Wu ◽  
Xiudong Sun ◽  
Yongyuan Jiang ◽  
Chunfeng Hou

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 71422-71434 ◽  
Author(s):  
Zhenguo Gao ◽  
Naeem Ayoub ◽  
Danjie Chen ◽  
Bingcai Chen ◽  
Zhimao Lu

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Wang ◽  
Lei Dai ◽  
Yingfeng Cai ◽  
Long Chen ◽  
Yong Zhang

Traditional salient object detection models are divided into several classes based on low-level features and contrast between pixels. In this paper, we propose a model based on a multilevel deep pyramid (MLDP), which involves fusing multiple features on different levels. Firstly, the MLDP uses the original image as the input for a VGG16 model to extract high-level features and form an initial saliency map. Next, the MLDP further extracts high-level features to form a saliency map based on a deep pyramid. Then, the MLDP obtains the salient map fused with superpixels by extracting low-level features. After that, the MLDP applies background noise filtering to the saliency map fused with superpixels in order to filter out the interference of background noise and form a saliency map based on the foreground. Lastly, the MLDP combines the saliency map fused with the superpixels with the saliency map based on the foreground, which results in the final saliency map. The MLDP is not limited to low-level features while it fuses multiple features and achieves good results when extracting salient targets. As can be seen in our experiment section, the MLDP is better than the other 7 state-of-the-art models across three different public saliency datasets. Therefore, the MLDP has superiority and wide applicability in extraction of salient targets.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 121330-121343
Author(s):  
Alessandro Bruno ◽  
Francesco Gugliuzza ◽  
Roberto Pirrone ◽  
Edoardo Ardizzone

Sign in / Sign up

Export Citation Format

Share Document