An Analysis in Tissue Classification for Colorectal Cancer Histology Using Convolution Neural Network and Colour Models

Author(s):  
Shamik Tiwari

Computer vision-based identification of different tissue categories in histological images is a critical application of the computer-assisted diagnosis (CAD). Computer-assisted diagnosis systems support to reduce the cost and increase the efficiency of this process. Traditional image classification approaches depend on feature extraction methods designed for a specific problem based on domain information. Deep learning approaches are becoming important alternatives with advance of machine learning technologies to overcome the numerous difficulties of the feature-based approaches. A method for the classification of histological images of human colorectal cancer containing seven different types of tissue using convolutional neural network (CNN) is proposed in this article. The method is evaluated using four different colour models in absence and presence of Gaussian noise. The highest classification accuracies are achieved with HVI colour model, which is 95.8% in nonexistence and 78.5% in existence of noise respectively.

Author(s):  
Shamik Tiwari

Computer vision-based identification of different tissue categories in histological images is a critical application of the computer-assisted diagnosis (CAD). Computer-assisted diagnosis systems support to reduce the cost and increase the efficiency of this process. Traditional image classification approaches depend on feature extraction methods designed for a specific problem based on domain information. Deep learning approaches are becoming important alternatives with advance of machine learning technologies to overcome the numerous difficulties of the feature-based approaches. A method for the classification of histological images of human colorectal cancer containing seven different types of tissue using convolutional neural network (CNN) is proposed in this article. The method is evaluated using four different colour models in absence and presence of Gaussian noise. The highest classification accuracies are achieved with HVI colour model, which is 95.8% in nonexistence and 78.5% in existence of noise respectively.


Author(s):  
Akella S. Narasimha Raju ◽  
Kayalvizhi Jayavel ◽  
Tulasi Rajalakshmi

<span>The malignancy of the colorectal testing methods has been exposed triumph to decrease the occurrence and death rate; this cancer is the relatively sluggish rising and has an extremely peculiar to develop the premalignant lesions. Now, many patients are not going to colorectal cancer screening, and people who do, are able to diagnose existing tests and screening methods. The most important concept of this motivation for this research idea is to evaluate the recognized data from the immediately available colorectal cancer screening methods. The data provided to laboratory technologists is important in the formulation of appropriate recommendations that will reduce colorectal cancer. With all standard colon cancer tests can be recognized agitatedly, the treatment of colorectal cancer is more efficient. The intelligent computer assisted diagnosis (CAD) is the most powerful technique for recognition of colorectal cancer in recent advances. It is a lot to reduce the level of interference nature has contributed considerably to the advancement of the quality of cancer treatment. To enhance diagnostic accuracy intelligent CAD has a research always active, ongoing with the deep learning and machine learning approaches with the associated convolutional neural network (CNN) scheme.</span>


1992 ◽  
Author(s):  
Shih-Chung B. Lo ◽  
Matthew T. Freedman ◽  
Jyh-Shyan Lin ◽  
Brian Krasner ◽  
Seong K. Mun

Sign in / Sign up

Export Citation Format

Share Document