Balanced Approach for Hiding Sensitive Association Rules in Data Sharing Environment

2014 ◽  
Vol 8 (3) ◽  
pp. 39-62 ◽  
Author(s):  
Janakiramaiah Bonam ◽  
Ramamohan Reddy

Privacy preserving association rule mining protects the sensitive association rules specified by the owner of the data by sanitizing the original database so that the sensitive rules are hidden. In this paper, the authors study a problem of hiding sensitive association rules by carefully modifying the transactions in the database. The algorithm BHPSP calculates the impact factor of items in the sensitive association rules. Then it selects a rule which contains an item with minimum impact factor. The algorithm alters the transactions of the database to hide the sensitive association rule by reducing the loss of other non-sensitive association rules. The quality of a database can be well maintained by greedily selecting the alterations in the database with negligible side effects. The BHPSP algorithm is experimentally compared with a HCSRIL algorithm with respect to the performance measures misses cost and difference between original and sanitized databases. Experimental results are also mentioned demonstrating the effectiveness of the proposed approach.

2017 ◽  
Vol 9 (2) ◽  
pp. 1 ◽  
Author(s):  
Meenakshi Bansal ◽  
Dinesh Grover ◽  
Dhiraj Sharma

Mining of sensitive rules is the most important task in data mining. Most of the existing techniques worked on finding sensitive rules based upon the crisp thresh hold value of support and confidence which cause serious side effects to the original database. To avoid these crisp boundaries this paper aims to use WFPPM (Weighted Fuzzy Privacy Preserving Mining) to extract sensitive association rules. WFPPM completely find the sensitive rules by calculating the weights of the rules. At first, we apply FP-Growth to mine association rules from the database. Next, we implement fuzzy to find the sensitive rules among the extracted rules. Experimental results show that the proposed scheme find actual sensitive rules without any modification along with maintaining the quality of the released data as compared to the previous techniques.


Author(s):  
YUE XU ◽  
YUEFENG LI

Association rule mining has many achievements in the area of knowledge discovery. However, the quality of the extracted association rules has not drawn adequate attention from researchers in data mining community. One big concern with the quality of association rule mining is the size of the extracted rule set. As a matter of fact, very often tens of thousands of association rules are extracted among which many are redundant, thus useless. In this paper, we first analyze the redundancy problem in association rules and then propose a reliable exact association rule basis from which more concise nonredundant rules can be extracted. We prove that the redundancy eliminated using the proposed reliable association rule basis does not reduce the belief to the extracted rules. Moreover, this paper proposes a level wise approach for efficiently extracting closed itemsets and minimal generators — a key issue in closure based association rule mining.


Author(s):  
Ronaldo Cristiano Prati

Receiver Operating Characteristics (ROC) graph is a popular way of assessing the performance of classification rules. However, as such graphs are based on class conditional probabilities, they are inappropriate to evaluate the quality of association rules. This follows from the fact that there is no class in association rule mining, and the consequent part of two different association rules might not have any correlation at all. This chapter presents an extension of ROC graphs, named QROC (for Quality ROC), which can be used in association rule context. Furthermore, QROC can be used to help analysts to evaluate the relative interestingness among different association rules in different cost scenarios.


Author(s):  
S. Nithya ◽  
M. Sangeetha ◽  
K.N. Apinaya Prethi ◽  
S. Vellingiri

2017 ◽  
Vol 7 (1.1) ◽  
pp. 19
Author(s):  
T. Nusrat Jabeen ◽  
M. Chidambaram ◽  
G. Suseendran

Security and privacy has emerged to be a serious concern in which the business professional don’t desire to share their classified transaction data. In the earlier work, secured sharing of transaction databases are carried out. The performance of those methods is enhanced further by bringing in Security and Privacy aware Large Database Association Rule Mining (SPLD-ARM) framework. Now the Improved Secured Association Rule Mining (ISARM) is introduced for the horizontal and vertical segmentation of huge database. Then k-Anonymization methods referred to as suppression and generalization based Anonymization method is employed for privacy guarantee. At last, Diffie-Hellman encryption algorithm is presented in order to safeguard the sensitive information and for the storage service provider to work on encrypted information. The Diffie-Hellman algorithm is utilized for increasing the quality of the system on the overall by the generation of the secured keys and thus the actual data is protected more efficiently. Realization of the newly introduced technique is conducted in the java simulation environment that reveals that the newly introduced technique accomplishes privacy in addition to security.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhicong Kou ◽  
Lifeng Xi

An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for an efficient and cost-effective product development and production. This paper proposes a new binary particle swarm optimization- (BPSO-) based association rule mining (BPSO-ARM) method for discovering the hidden relationships between machine capabilities and product features. In particular, BPSO-ARM does not need to predefine thresholds of minimum support and confidence, which improves its applicability in real-world industrial cases. Moreover, a novel overlapping measure indication is further proposed to eliminate those lower quality rules to further improve the applicability of BPSO-ARM. The effectiveness of BPSO-ARM is demonstrated on a benchmark case and an industrial case about the automotive part manufacturing. The performance comparison indicates that BPSO-ARM outperforms other regular methods (e.g., Apriori) for ARM. The experimental results indicate that BPSO-ARM is capable of discovering important association rules between machine capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.


Semantic Web ◽  
2013 ◽  
pp. 76-96
Author(s):  
Luca Cagliero ◽  
Tania Cerquitelli ◽  
Paolo Garza

This paper presents a novel semi-automatic approach to construct conceptual ontologies over structured data by exploiting both the schema and content of the input dataset. It effectively combines two well-founded database and data mining techniques, i.e., functional dependency discovery and association rule mining, to support domain experts in the construction of meaningful ontologies, tailored to the analyzed data, by using Description Logic (DL). To this aim, functional dependencies are first discovered to highlight valuable conceptual relationships among attributes of the data schema (i.e., among concepts). The set of discovered correlations effectively support analysts in the assertion of the Tbox ontological statements (i.e., the statements involving shared data conceptualizations and their relationships). Then, the analyst-validated dependencies are exploited to drive the association rule mining process. Association rules represent relevant and hidden correlations among data content and they are used to provide valuable knowledge at the instance level. The pushing of functional dependency constraints into the rule mining process allows analysts to look into and exploit only the most significant data item recurrences in the assertion of the Abox ontological statements (i.e., the statements involving concept instances and their relationships).


Author(s):  
Carson Kai-Sang Leung

The problem of association rule mining was introduced in 1993 (Agrawal et al., 1993). Since then, it has been the subject of numerous studies. Most of these studies focused on either performance issues or functionality issues. The former considered how to compute association rules efficiently, whereas the latter considered what kinds of rules to compute. Examples of the former include the Apriori-based mining framework (Agrawal & Srikant, 1994), its performance enhancements (Park et al., 1997; Leung et al., 2002), and the tree-based mining framework (Han et al., 2000); examples of the latter include extensions of the initial notion of association rules to other rules such as dependence rules (Silverstein et al., 1998) and ratio rules (Korn et al., 1998). In general, most of these studies basically considered the data mining exercise in isolation. They did not explore how data mining can interact with the human user, which is a key component in the broader picture of knowledge discovery in databases. Hence, they provided little or no support for user focus. Consequently, the user usually needs to wait for a long period of time to get numerous association rules, out of which only a small fraction may be interesting to the user. In other words, the user often incurs a high computational cost that is disproportionate to what he wants to get. This calls for constraint-based association rule mining.


Author(s):  
Ling Zhou ◽  
Stephen Yau

Association rule mining among frequent items has been extensively studied in data mining research. However, in recent years, there is an increasing demand for mining infrequent items (such as rare but expensive items). Since exploring interesting relationships among infrequent items has not been discussed much in the literature, in this chapter, the authors propose two simple, practical and effective schemes to mine association rules among rare items. Their algorithms can also be applied to frequent items with bounded length. Experiments are performed on the well-known IBM synthetic database. The authors’ schemes compare favorably to Apriori and FP-growth under the situation being evaluated. In addition, they explore quantitative association rule mining in transactional databases among infrequent items by associating quantities of items: some interesting examples are drawn to illustrate the significance of such mining.


Author(s):  
Sathiyapriya Krishnamoorthy ◽  
G. Sudha Sadasivam ◽  
M. Rajalakshmi ◽  
K. Kowsalyaa ◽  
M. Dhivya

An association rule is classified as sensitive if its thread of revelation is above certain confidence value. If these sensitive rules were revealed to the public, it is possible to deduce sensitive knowledge from the published data and offers benefit for the business competitors. Earlier studies in privacy preserving association rule mining focus on binary data and has more side effects. But in practical applications the transactions contain the purchased quantities of the items. Hence preserving privacy of quantitative data is essential. The main goal of the proposed system is to hide a group of interesting patterns which contains sensitive knowledge such that modifications have minimum side effects like lost rules, ghost rules, and number of modifications. The proposed system applies Particle Swarm Optimization to a few clusters of particles thus reducing the number of modification. Experimental results demonstrate that the proposed approach is efficient in terms of lost rules, number of modifications, hiding failure with complete avoidance of ghost rules.


Sign in / Sign up

Export Citation Format

Share Document