Selecting Demolition Waste Materials Disposal Alternatives Using Fuzzy TOPSIS Technique

2017 ◽  
Vol 6 (2) ◽  
pp. 38-57 ◽  
Author(s):  
Mohamed Marzouk ◽  
Mohamed Abd El-Razek

This article describes how in developing countries, millions of tons of construction and demolition wastes (CDWs) are lost every year due to lack of knowledge of recycling significance and/or procedures. Despite the high value of CDWs, high percentage of this waste is either dumped illegally or disposed in the landfills. Disposal methods should consider saving natural resources and maintaining the environmental conditions through maximizing the value of CDWs. This article aims at choosing the most sustainable disposal alternative using Multi-Criteria Decision Making (MCDM) Process, considering several sustainability measure indicators. The research introduces a list containing the most relevant and significant sustainable indicators that affect the selection of alternative for disposal of CDWs. Then, fuzzy TOPSIS technique is applied considering the significant indicators on each alternative to rank and choose the best alternative for disposal of CDWs.

2020 ◽  
pp. 730-750
Author(s):  
Mohamed Marzouk ◽  
Mohamed Abd El-Razek

This article describes how in developing countries, millions of tons of construction and demolition wastes (CDWs) are lost every year due to lack of knowledge of recycling significance and/or procedures. Despite the high value of CDWs, high percentage of this waste is either dumped illegally or disposed in the landfills. Disposal methods should consider saving natural resources and maintaining the environmental conditions through maximizing the value of CDWs. This article aims at choosing the most sustainable disposal alternative using Multi-Criteria Decision Making (MCDM) Process, considering several sustainability measure indicators. The research introduces a list containing the most relevant and significant sustainable indicators that affect the selection of alternative for disposal of CDWs. Then, fuzzy TOPSIS technique is applied considering the significant indicators on each alternative to rank and choose the best alternative for disposal of CDWs.


2020 ◽  
pp. 1396-1416
Author(s):  
Mohamed Marzouk ◽  
Mohamed Abd El-Razek

This article describes how in developing countries, millions of tons of construction and demolition wastes (CDWs) are lost every year due to lack of knowledge of recycling significance and/or procedures. Despite the high value of CDWs, high percentage of this waste is either dumped illegally or disposed in the landfills. Disposal methods should consider saving natural resources and maintaining the environmental conditions through maximizing the value of CDWs. This article aims at choosing the most sustainable disposal alternative using Multi-Criteria Decision Making (MCDM) Process, considering several sustainability measure indicators. The research introduces a list containing the most relevant and significant sustainable indicators that affect the selection of alternative for disposal of CDWs. Then, fuzzy TOPSIS technique is applied considering the significant indicators on each alternative to rank and choose the best alternative for disposal of CDWs.


2015 ◽  
Vol 735 ◽  
pp. 41-49 ◽  
Author(s):  
Arash Azaryoon ◽  
Musa Hamidon ◽  
Ashraf Radwan

In this study, a knowledge-based system has been developed for selection of non-conventional machining processes using a hybrid multi-criteria decision making Method. This approach is a combination ofDEMATEL(Decision Making Trial and Evaluation Laboratory),ANP(Analytic Network Process) andVIKOR(VlseKriterijumska Optimizacija I Kompromisno Resenje, in Serbian, meaning Multi-criteria Optimization and Compromise Solution) methods which evaluates different types of quantitative and qualitative measures of performance and economic factors, and ultimately provides a set of capable processes in order of priority. Twelve machining processes, eight group of workpiece material and eighteen shape features have been investigated in this study. What separates this approach from others is that, this hybrid method considers the influence of factors in the network relation map as well as their relative importance. Moreover, unlike other popular ranking methods such as TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution), it is not just based on two reference points, namely ideal and inferior points; instead, it proposes a compromise solution and not just a single ranking score. Observations have shown that the developed system works satisfactorily, yields acceptable results and makes accurate decisions as well. It also provides a comparative study among the alternative processes by utilizing graphical features for better analysis and judgment of acceptable alternatives.


2013 ◽  
Vol 415 ◽  
pp. 741-744
Author(s):  
D.K. Behera ◽  
Asis Sarkar

Selection of qualified faculty is a key success factor for any university. The aim of this paper is to support adequately the decision making process for those connected with the faculty selection process. The steps of fuzzy TOPSIS technique are considered, incorporating a new concept for the ranking of the alternative candidates. The candidates are judged on the following criterias such as strategy formulation/strategic decision making capability, change management /change adaptability, communication/interpersonal skill, leadership, risk/crisis management, knowledge of software/software tools , professional experience , and educational background. Five candidates with different skills are taken for the judgment of their fate. They were asked to answer a set of questionnaires made by the experts and after that they were evaluated by the experts board. The real life application on the selection of any executive member/post shows the practical utility of this method.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 637 ◽  
Author(s):  
Vasiliki Balioti ◽  
Christos Tzimopoulos ◽  
Christos Evangelides

The selection of an appropriate spillway has a significant effect to the construction of a dam and several procedures and considerations are needed. In the past, this selection of the type of the spillway was arbitrary and sometimes with bad results. Recently the Multiple Criteria Decision Making theory has given the possibility to make a decision about the optimum form of a spillway under complex circumstances. In this paper, the above method is used and especially the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method for the selection of a spillway for a dam in the district of Kilkis in Northern Greece—‘Dam Pigi’. As the criteria were fuzzy and uncertain, the Fuzzy TOPSIS method is introduced together with the AHP (Analytic Hierarchy Process), which is used for the evaluation of criteria and weights. Five types of spillways were selected as alternatives and nine criteria. The criteria are expressed as triangular fuzzy numbers in order to formulate the problem. Finally, using the Fuzzy TOPSIS method, the alternatives were ranked and the optimum type of spillway was obtained.


Author(s):  
Manoj Kumar Bansal ◽  
Pratibha Garg ◽  
Neha Gupta ◽  
Mohini Agarwal

The distribution of electricity has become a challenge as there are losses associated with its distribution and transmission. In reducing such losses employment of Distributed Generation units in the transmission network can benefit greatly. Thus, the concern is on the optimal placement of Distributed Generation units that can provide maximum benefits and optimize several conflicting attributes. In this paper, the emphasis is laid on determining an optimal location for the placement of a Distributed Generation unit under conflicting attributes such as losses, real and reactive power, and voltages at different buses. For this purpose, the Technique for Order of Preference by Similarity to best Solution a Multi-Criteria Decision-Making technique, and Fuzzy TOPSIS technique have been employed for determining the optimal placement of 10 MW Distributed Generation unit at the IEEE 20 Bus System. The results obtained can significantly benefit in reducing losses and greatly help in economical perspective as well.


Author(s):  
Md Tarique Jamal Ansari ◽  
Fahad Ahmed Al-Zahrani ◽  
Dhirendra Pandey ◽  
Alka Agrawal

Abstract Background Today’s healthcare organizations want to implement secure and quality healthcare software as cyber-security is a significant risk factor for healthcare data. Considering security requirements during trustworthy healthcare software development process is an essential part of the quality software development. There are several Security Requirements Engineering (SRE) methodologies, framework, process, standards available today. Unfortunately, there is still a necessity to improve these security requirements engineering approaches. Determining the most suitable security requirements engineering method for trustworthy healthcare software development is a challenging process. This study is aimed to present security experts’ perspective on the relative importance of the criteria for selecting effective SRE method by utilizing the multi-criteria decision making methods. Methods The study was planned and conducted to identify the most appropriate SRE approach for quality and trustworthy software development based on the security expert’s knowledge and experience. The hierarchical model was evaluated by using fuzzy TOPSIS model. Effective SRE selection criteria were compared in pairs. 25 security experts were asked to response the pairwise criteria comparison form. Results The impact of the recognized selection criteria for effective security requirements engineering approaches has been evaluated quantitatively. For each of the 25 participants, comparison matrixes were formed based on the scores of their responses in the form. The consistency ratios (CR) were found to be smaller than 10% (CR = 9.1% < 10%). According to pairwise comparisons result; with a 0.842 closeness coefficient (Ci), STORE methodology is the most effective security requirements engineering approach for trustworthy healthcare software development. Conclusions The findings of this research study demonstrate various factors in the decision-making process for the selection of a reliable method for security requirements engineering. This is a significant study that uses multi-criteria decision-making tools, specifically fuzzy TOPSIS, which used to evaluate different SRE methods for secure and trustworthy healthcare application development.


Sign in / Sign up

Export Citation Format

Share Document